• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study shows how HIV is shielded from immune attack

Bioengineer by Bioengineer
July 10, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UNSW

Scientists from UNSW Sydney and the UK have discovered that the human immunodeficiency virus (HIV) hijacks a small molecule from the host cell to protect itself from being destroyed by the host's immune system.

The finding, as well as details of the new strategy that enabled it, are published as back-to-back papers in eLife. They identify a new target for antiviral therapy against HIV and provide a method for testing and measuring new drugs designed to target the capsid.

UNSW PhD student Chantal Márquez is involved in both studies and is the first author of the paper describing the new method.

HIV forms a protein shell – called a capsid – that shields its genetic material from host defence mechanisms as it enters the cell and makes its way to the nucleus to establish infection.

Using a new single-molecule microscopy technique – developed at UNSW's Single Molecule Science in the Faculty of Medicine – the research teams found that HIV specifically incorporates a small molecule from the host cell – inositol hexakisphosphate – to strengthen its capsid. The host inadvertently provides the key for the virus infecting it to lock down the protective shell, keeping the genetic cargo safe until it is released into the nucleus.

"The HIV capsid falls apart within minutes once it's isolated from the virus," said Associate Professor Till Böcking, who led the UNSW team involved in both studies.

"Our strategy lets us study exactly how a native capsid breaks apart in real-time without taking it out of the viral membrane."

With the help of Associate Professor Stuart Turville of the Kirby Institute, the team engineered viruses with fluorescent tags to monitor the viral capsid using fluorescence microscopy.

"We can now see the effect of different molecules on the capsid, and pinpoint precisely when it cracks open and begins to collapse," says Associate Professor Böcking.

"Capsids need to be much more stable inside a cell because the infection process takes hours, not minutes – so we wanted to find out what keeps it stable inside a cell," says Dr David Jacques of Single Molecule Science, who is an author of both studies.

The researchers found that inositol hexakisphosphate, which is abundantly present inside mammalian cells, makes the capsid much stronger, stabilizing it for 10-20 hours.

"It's like a switch. When you bind this molecule, you stabilize the capsid, and release the molecule to open it up," explains Associate Professor Böcking.

"The HIV capsid has been intensively studied, but the question of how it can simultaneously be both stable and poised to 'uncoat' has been one of the great unanswered questions in HIV biology," says Dr Leo James, leader of the research team at the Medical Research Council Laboratory of Molecular Biology in Cambridge, UK.

Most of the currently approved HIV therapies target enzymes needed at different stages of the virus' life cycle, but none of them are directed at the HIV capsid. New drug alternatives could improve the treatment of HIV with reduced toxic effects.

###

The research papers are available online:

  • https://doi.org/10.7554/eLife.35335 (discovery that HIV uses small molecule to strengthen its protective capsid)
  • https://doi.org/10.7554/eLife.34772 (single-molecule microscopy strategy that enabled the discovery)

Media Contact

Isabelle Dubach
[email protected]
61-401-524-321
@UNSWnews

http://www.unsw.edu.au

Related Journal Article

http://dx.doi.org/10.7554/eLife.35335

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.