• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research confirms a new way for cells to conserve energy

Bioengineer by Bioengineer
July 9, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

By proving a theory that was first proposed almost 40 years ago, researchers have confirmed a new way that cells conserve energy.

The study, led by William Metcalf, G. William Arends Professor of Molecular and Cellular Biology and leader of the Mining Microbial Genomes research theme at the University of Illinois Carl R. Woese Institute for Genomic Biology, was published in mBio and gives scientists a better understanding of how organisms conserve energy and function as a part of the global carbon cycle.

All living organisms need to conserve energy to move, grow and reproduce. Cells conserve energy by creating a molecule called ATP, and they usually do this by making a chemical gradient across their cell membrane, which gives them the energy to create ATP.

There are several ways to make this gradient — plants use light energy through photosynthesis, and humans and animals use chemical energy. These methods have been thoroughly studied, but in 1981, a scientist named Harry Peck proposed another method for energy conservation: a process called hydrogen cycling.

Hydrogen can easily move across cell membranes. Peck proposed that hydrogen in the cell could diffuse to the outside of the cell, where enzymes would recapture it and make hydrogen ions, which would create the chemical gradient needed to conserve energy.

The theory was widely criticized. Critics said it would be too difficult for the cell to recapture hydrogen in this way.

"Nobody really believed it," Metcalf said. "Most people really had a great deal of skepticism about it."

Then, eight years ago, Metcalf and his lab were studying methane-producing organisms, which use hydrogen gas to grow. These organisms use a set of enzymes called hydrogenases to create and consume hydrogen.

Metcalf and his lab began to create mutants of these hydrogenases and found that when the gene for hydrogenases was turned off, the cells died — but these cells also began to produce large amounts of hydrogen.

"This led us to the idea that what our methane-producing cells were actually doing was hydrogen cycling," Metcalf said. "This idea that Harry Peck put forth in the 80s that nobody really believed actually was probably true."

Further experiments showed that the cells died because they had lost the ability to recapture hydrogen.

"We could show that when you lose the ability to recapture it, not only do the cells die, but they secrete huge amounts of hydrogen," Metcalf said. "It really is the first experimental evidence that convincingly shows that hydrogen cycling is a mechanism for energy conservation."

After years of criticism, Peck's idea was proved correct — at least for these methane-producing cells. However, Metcalf said hydrogen cycling is likely common in other organisms.

"Not only was Harry Peck right, but it probably happens all the time in nature," he said. "And it's just been masked by the fact that . . . in many cases the mutations are lethal, so there was no way for people to ever prove that it occurred."

It was also undetectable because cells have a backup method for conserving energy if they are unable to do hydrogen cycling, which keeps them alive.

"They would prefer to do hydrogen cycling, but they do have alternatives," Metcalf said. "And so for these two reasons, this interesting mechanism for energy conservation, what all cells want to do, is kind of hiding in plain sight."

Metcalf said understanding this mechanism is crucial because organisms that do hydrogen cycling are key players in the global carbon cycle. If scientists want to understand the balance of elements and molecules in the environment, they need to understand the basic mechanisms as well.

"This is a key piece of energy conservation and, hence, how these organisms adapt and grow," he said. "It fills in a knowledge gap of how these organisms function."

###

Media Contact

Nicholas Vasi
[email protected]
@IGBIllinois

http://www.igb.uiuc.edu

https://www.igb.illinois.edu/article/research-confirms-new-way-cells-conserve-energy

Related Journal Article

http://dx.doi.org/10.1128/mBio.01256-18

Share14Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Menopause Care: Insights from Workforce Review and Consultation

LRRK2R1627P Mutation Boosts Gut Inflammation, α-Synuclein

3D Gut-Brain-Vascular Model Reveals Disease Links

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.