• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists create a complete atlas of lung tumor cells

Bioengineer by Bioengineer
July 9, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from VIB, Leuven University and University Hospital Leuven studied thousands of healthy and cancerous lung cells to create the first comprehensive atlas of lung tumor cells. Their results reveal that tumors are much more complex than previously appreciated, distinguishing 52 different types of cells. This new information can be used to identify new research lines for treatment. The results of the study will be published in the leading journal Nature Medicine.

While scientists have made enormous headway in the fight against cancer, scientific understanding of tumors at the level of their most fundamental unit – the cell – has been relatively limited. With the advent of new technologies such as single-cell sequencing, big data analytics and advanced bioinformatics pipelines, it is now possible to examine individual cells within their microenvironments at high resolution, for rich insights into their phenotypes.

Tumors found to be unexpectedly more complex

Tumors are very complex ecosystems of cells that interact with their native environments. Studying them in detail requires technologies that have only recently become accessible. The researchers used single-cell RNAseq technology to study almost 100,000 individual cells, focusing on both cancerous cells and non-cancerous cells in tumors such as blood vessels, immune cells and fibrous cells to create the very first 'atlas' of cell phenotypes found in lung tumors.

Prof. Diether Lambrechts (VIB-KU Leuven): "We were surprised to discover that there are actually many more different cell types in lung tumors than expected. We identified 52 different types of cells, versus the dozen cells already known to be present. This indicates that tumors are even more complex than we had realized."

The importance of studying cells within their natural environments

Many of the cells in tumors have never before been characterized in their native environments. Because the team analyzed both tumor cells and lung cells found outside the tumor and compared the two, they were moreover able to observe how each cell type is altered by the tumor.

Prof. Bernard Thienpont (KU Leuven): "The comprehensive tumor cell atlas that we developed provides a benchmark for cell types that, up to this point, have typically only been studied in-depth in vitro or in animal models. For the first time, we are capable of seeing to what extent these models reflect the actual situation in patients.

"With these results, we've also opened up numerous avenues for future research. Do our findings hold true in other tumor types? How are these cells affected by therapy, and how do they develop resistance? What are the physical locations of these cell types in tumors and can we put together a cellular building plan for tumors? How do tumors produce and support this remarkable complexity, and can we develop therapies that take advantage of tumor-specific vulnerabilities? All of these questions are now ripe for exploration."

Dr. Els Wauters (Leuven University Hospitals) adds: "The new information that we've gathered will be used to develop new strategies to fight the formation of blood vessels in tumors and to test new potential targets for immunotherapy. In addition, we also demonstrated that the presence of some types of cells is associated with lower patient survival, further emphasizing the clinical importance of our findings.

###

Publication

Phenotype molding of stromal cells in the lung tumor microenvironment. Nature Medicine, July 2018

Questions from patients

A breakthrough in research is not the same as a breakthrough in medicine. The realizations of VIB researchers can form the basis of new therapies, but the development path still takes years. This can raise a lot of questions. That is why we ask you to please refer questions in your report or article to the email address that VIB makes available for this purpose: [email protected]. Everyone can submit questions concerning this and other medically-oriented research directly to VIB via this address.

Media Contact

Sooike Stoops
[email protected]
32-924-46611
@VIBLifeSciences

http://www.vib.be

Share13Tweet8Share2ShareShareShare2

Related Posts

UMass Amherst Researcher Awarded $1.12M NSF Grant to Investigate Water Governance Effects on Child Health Across Five Nations

UMass Amherst Researcher Awarded $1.12M NSF Grant to Investigate Water Governance Effects on Child Health Across Five Nations

September 17, 2025

Study Reveals Resistance Training Enhances Nerve Health and Slows Aging Process

September 17, 2025

American College of Chest Physicians Pioneers Initiative to Expand Access to Lifesaving Noninvasive Ventilation for COPD Patients

September 17, 2025

Impact of Soccer Headers on Brain Health: Study Reveals Structural Changes in Brain Folds

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UMass Amherst Researcher Awarded $1.12M NSF Grant to Investigate Water Governance Effects on Child Health Across Five Nations

Widely Available, Affordable Medication Reduces Colorectal Cancer Recurrence Risk by Half

Study Reveals Resistance Training Enhances Nerve Health and Slows Aging Process

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.