• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

University of Minnesota research derives muscle stem cells from teratomas

Bioengineer by Bioengineer
July 5, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Minneapolis, MN- July 5, 2018- Researchers at the University of Minnesota Medical School have developed a process to regenerate skeletal muscle cells in mice with muscular dystrophy. The unlikely source of those cells is a type of benign tumor called a teratoma.

In a study published in Cell Stem Cell's July 5, 2018 issue, available online at https://www.cell.com/cell-stem-cell/home, Michael Kyba, PhD and Lillehei Heart Institute colleagues Sunny Chan, Robert W. Arpke, Antonio Filareto, Ning Xie, Matthew P. Pappas, Jacqueline S. Penaloza, Rita C. R. Perlingeiro describe their work in seeking a source of cells to rebuild muscle.

"The goal of this research was to seek in unexplored places a source of cells that, when transplanted, would rebuild skeletal muscle and demonstrate significant improvements in muscle strength and resilience," said lead author Michael Kyba, Professor in the Medical School's Department of Pediatrics.

The authors targeted cells from animal teratomas and found that by refining and sorting cells they were able to rebuild skeletal muscle in mice with muscular dystrophy. Teratomas are a type of tumor that produces cells of all types, including glands and hair follicles.

"We did not study spontaneously arising pathological teratomas," said co-author Sunny Chan, PhD, Assistant Professor in the Medical School's Department of Pediatrics.

"Instead, we created teratomas using undifferentiated pluripotent cells injected into an immunodeficient mouse, and found that among their many cell types, the resulting teratomas contained muscle stem cells."

Outcomes showed improved potential to an extent beyond results researchers have seen before. The investigators injected a small number of teratoma derived cells into a diseased muscle and found that they regenerated 80 percent of this muscle versus the 5 to 10 percent regeneration currently possible. The teratoma-derived cells also populated the newly formed muscle with muscle stem cells.

Other important measures of muscle effectiveness including tetanic force, specific force, and fatigue time showed the teratoma cell-generated muscled showed significant improvement over the control muscle.

While the results are promising, the authors note that the main advance is the ability to generate cells of tremendous regenerative potential for study as opposed to therapy at this point. Although the newly-formed muscles showed no signs of the teratomas from which they were derived or any other adverse events, safety is paramount and fail-safe measures would need to be implemented before considering therapeutic applications.

The scientists note that teratomas are conventionally considered an unattractive byproduct of stem cell research. "The fact that teratomas harbor cells of such greater potency than those that spontaneously differentiate when we culture them in a dish is remarkable," says Chan. "Indeed, beauty can be found in the most unexpected of places."

###

About the University of Minnesota Medical School

The University of Minnesota Medical School is at the forefront of learning and discovery, transforming medical care and educating the next generation of physicians. Our graduates and faculty produce high-impact biomedical research and advance the practice of medicine. Visit med.umn.edu to learn how the University of Minnesota is innovating all aspects of medicine.

Media Contact

Krystle Barbour
[email protected]
612-626-2767
@umnmedschool

https://www.med.umn.edu/

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.