• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Breakthrough synthesis strategy could mean wave of new medicinal compounds

Bioengineer by Bioengineer
July 3, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Benjamin Moten

TALLAHASSEE, Fla. — In pharmacology, not all molecular structures are created equal. Some frameworks are overrepresented in nature, making them especially attractive to scientists on the hunt for more effective drugs.

One such structure, known to scientists as the carbocyclic 5-8-5 fused ring system, is notoriously difficult to produce using conventional laboratory methods, and researchers have therefore been largely unable to tap into its potentially broad therapeutic potential.

Now, an innovative synthetic technique developed by Florida State University chemists could unlock these elusive structures, opening the door to a new world of cutting-edge medicinal compounds.

In a study published in the journal Chemical Science, FSU researchers detail a novel, modular scheme for producing large quantities of the 5-8-5 ring structure. A synthesis process that was once exceptionally labor- and resource-intensive, they discovered, could be streamlined into four relatively straightforward steps.

"The ubiquity of the 5-8-5 ring system within natural products caught our attention," said lead author James Frederich, an assistant professor in the Department of Chemistry and Biochemistry. "Our chemistry provides an attractive entry point to natural products harboring a 5-8-5 ring system."

Considered by chemists to be a possible example of a "privileged scaffold" — an atomic arrangement that recurs frequently in biologically active compounds — the 5-8-5 framework is composed of two five-sided molecular rings fused to a central 8-sided ring. This unique architecture constitutes the core of more than 30 natural products, several of which have useful, potentially therapeutic effects in human cell cultures.

Existing methods for producing this framework in a lab were limited by impractically protracted synthesis processes requiring high temperatures and transition metal catalysts. Frederich's approach sidesteps these hurdles. In his system, cyclization substrates — the underlying structures upon which the ring frameworks are built — can be accessed via a simple two-step assembly scheme. With a reliable substrate in place, the full 5-8-5 scaffold is accomplished in one, highly controlled operation with UV light employed to promote ring formation.

"The use of UV light is particularly convenient as it avoids the need for high temperatures or costly catalysts," Frederich said.

Frederich's strategy is a significant improvement on current approaches to 5-8-5 ring structure synthesis. He said the simplified, high-yielding methodology will aid scientists as they work to better understand the possible medicinal properties of synthetic products built upon the 5-8-5 scaffold.

In particular, Frederich said these compounds could help stabilize protein-protein interactions — the physical mingling of protein molecules that govern biological processes within a cell.

"We speculate that the 5-8-5 ring system can support a range of designed, non-natural structures with interesting properties in human cell culture," he said. "We expect to leverage this chemistry to build and test certain structures that have been shown to modulate protein-protein interactions."

###

This research was funded by the National Institutes of Health.

Media Contact

Zack Boehm
[email protected]
850-645-1504
@floridastate

http://www.fsu.edu

Original Source

http://news.fsu.edu/news/science-technology/2018/07/03/breakthrough-synthesis-strategy-could-mean-wave-of-new-medicinal-compounds/ http://dx.doi.org/10.1039/C8SC00999F

Share12Tweet7Share2ShareShareShare1

Related Posts

Oleanolic Acid: A Multi-Strategy Weapon Against Cancer

November 9, 2025

Weight Loss Medications Safe for Patients with High Triglycerides: No Increased Risk of Pancreatitis or Cardiac Events

November 9, 2025

Exploring Social Support’s Impact on Geriatric Cancer Patients

November 9, 2025

Red Blood Cells and Tumor Cells: A Pro-Metastatic Link?

November 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stress, Flexibility, and Perception in Student Mental Health

Oleanolic Acid: A Multi-Strategy Weapon Against Cancer

Embryonic Heat Manipulation: Metabolic Programming Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.