• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

How our brains learn to control and remember walking

Bioengineer by Bioengineer
July 3, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UMass Amherst

AMHERST, Mass. – Movement neuroscientist Julia Choi at the University of Massachusetts Amherst recently received a five-year, $616,057 grant from the National Science Foundation's (NSF) faculty early career development (CAREER) program to investigate how the brain learns to control walking. She says such research will help to guide new treatments to improve walking function in people with age-related changes or neurological damage.

"I'm interested in how our brain controls movement and how age or brain damage affects movement. I study the neural control of movement in both healthy people and those with neurological disorders," she notes. "One thing we want to understand is how we get better with practice. We think motor learning processes in healthy people and what goes on in re-learning for the injured brain have a similar mechanism. We want to see if we can enhance these to help patients recover motor function that they've lost."

Choi, an assistant professor of kinesiology in the School of Public Health and Health Sciences, says, "Just as walking uses different neural circuits than are used for moving your hands, we think there might be different patterns in how motor memories are stored for walking. There might be similarities and differences and we'll try to probe that."

She plans to study people walking in experiments that call on different types of learning on a regular and on a split-belt treadmill, which has two belts that can move at different speeds. Her work is part of NSF's "Science of Learning" program.

Choi adds, "We don't have to think much about walking unless there's an obstacle in our way, but our brains are doing a lot of work all the time to help us cope and adapt to changes. A good example is when we go to the beach and step from pavement onto a sandy beach. Your brain helps you quickly adjust to the change, then when you return to the parking lot, walking feels funny again."

She will study how people adapt to the experience of walking on a treadmill where one belt goes twice as fast as the other, and as they de-adapt to the belts moving at the same speed again, which takes a few minutes. "Your brain learns and stores the first pattern and you have to de-adapt when it stops. It's not just a mechanical change that takes place. If that were true, we could change immediately from one speed to the other, but we can't. Motor memories are being processed in the brain even after you stop practicing. This shows that the brain has expectations about what's coming."

"With this type of study we can explore whether we can help a person who walks asymmetrically from a stroke, for example, to adapt back to more normal walking." Choi will also use a unique treadmill training protocol she developed that presents study participants with a circle target on the belt that requires them to alter their stride to hit it with their feet.

"It's like a game," she says, "they get points for hitting the circle. One thing we can learn from this is whether people can learn a pattern and recall it days later and do better at it than if they were performing just a random pattern. It's like learning the piano, you can do better without even practicing when you come back to it after a break. This kind of off-line learning has been demonstrated in finger-tapping but not in walking. It would be really useful if we can find out that this happens with walking because it would show that learning different walking patterns can help people learn a completely new one more easily."

###

Choi earned her undergraduate degree at McGill University, Montréal, and her Ph.D. at Johns Hopkins University. She came to UMass Amherst in 2014 after completing postdoctoral fellowships at Emory University and the University of Copenhagen.

The CAREER award is the NSF's highest award in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and integrating education and research with their institution's mission.

Media Contact

Janet Lathrop
[email protected]
413-545-2989
@umassscience

http://www.umass.edu

Original Source

http://www.umass.edu/newsoffice/article/how-our-brains-learn-control-and-remember

Share13Tweet8Share2ShareShareShare2

Related Posts

Personalized Guide to Understanding and Reducing Chemicals

February 7, 2026

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.