• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New drugs to treat top infectious disease killer a possibility with Otago discovery

Bioengineer by Bioengineer
July 3, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Otago

University of Otago researchers have discovered a novel property of a new anti-tuberculosis drug which may help develop more drugs to treat the top infectious disease killer in the world.

Globally, there are about 1.7 million deaths annually that are attributed to tuberculosis (TB) with rising incidents of drug-resistant TB.

Professor Greg Cook from the University of Otago's Department of Microbiology and Immunology, together with Postdoctoral fellow Dr Kiel Hards, have been investigating one of the first new TB drugs approved in more than 40 years, Bedaquiline – which is sold under the brand name Sirturo.

"Bedaquiline is the first new drug to be developed after 40 years of searching for more effective drugs that combat TB and was only FDA (US Food and Drug Administration) approved in 2012," Professor Cook explains.

"But one drug won't be enough to reverse a 40-year lull in drug-development, so our lab is actively searching for new TB drugs to complement Bedaquiline and expand the treatment options available to clinicians world-wide."

In order to develop even better drugs to combat TB, Dr Hards says it is important to understand why Bedaquiline is so good in the first place.

"The most promising aspects of the drug are its ability to shorten treatment timeframe to eight weeks and that its target is unconventional for an antimicrobial. Bedaquiline disrupts the ability of M. tuberculosis to generate energy," Dr Hards explains.

"What we discovered is that the drug has a second activity or property that may explain how it is able to kill non-replicating cells. This second activity (termed ionophoric) involves the movement or shutting of ions across the mycobacterial membrane resulting in the dissipating of critical ion gradients needed for growth and survival."

Potentially, their finding which was recently published in the international journal Proceedings of the National Academy of Sciences of the United States of America could have ramifications for other antibiotics, as it be could be the case that many other antibiotics work by this mechanism, Professor Cook says.

"We believe that we can design more effective TB drugs if we include ionophore-like properties in a similar way to Bedaquiline," he says.

"The 'biological electricity' that these ions normally create is key to energy generation and a whole series of other incredibly important cellular processes. It was already known that disrupting these ion gradients is lethal to M. tuberculosis but before Bedaquiline there were no drugs that could do this and be safe in humans."

Professor Cook says it is very rare to discover new properties about drugs as researchers frequently focus on the primary target of a drug and often the off target or secondary effects of drugs are ignored.

"Subsequent discoveries are usually serendipitous, but in the case of Bedaquiline we realised the previous data didn't explain how it could kill non-replicating cells and so we kept pushing to find the answer," he explains.

"Many researchers are now turning their attention back to focusing on how antimicrobials actually kill bacteria to uncover new pathways of cell death. These offer tremendous potential to develop new antimicrobials."

The Otago researchers were the lead researchers in the investigation, but worked in collaboration with colleagues from The University of Technology in the Netherlands, the University of Illinois in the United States and Vrije University in Amsterdam.

###

The work received funding support from the Marsden Fund, Royal Society and the Maurice Wilkins Centre for Molecular Biodiscovery.

For further information, contact

Professor Gregory M Cook
Department of Microbiology and Immunology
Tel 03 479 7722
Mob 021 244 7257
Email [email protected]

Dr Kiel Hards
Department of Microbiology and Immunology
Mob 022 013 3139
Email [email protected]

Liane Topham-Kindley
Senior Communications Adviser
Tel 03 479 9065
Mob 021 279 9065
Email [email protected]

Media Contact

Liane Topham-Kindley
[email protected]
64-212-799-065
@otago

http://www.otago.ac.nz

Share12Tweet7Share2ShareShareShare1

Related Posts

LRRK2R1627P Mutation Boosts Gut Inflammation, α-Synuclein

February 7, 2026

3D Gut-Brain-Vascular Model Reveals Disease Links

February 7, 2026

Low-Inflammation in Elderly UTIs: Risks and Resistance

February 7, 2026

Urinary Clusterin: Tracking Kidney Disease and Treatment Response

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

LRRK2R1627P Mutation Boosts Gut Inflammation, α-Synuclein

3D Gut-Brain-Vascular Model Reveals Disease Links

Low-Inflammation in Elderly UTIs: Risks and Resistance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.