• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Small bee ‘pollen thieves’ are not effective bumblebee substitutes, study shows

Bioengineer by Bioengineer
June 29, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Dan Addison, University of Virginia

Bumblebee populations are declining in the United States for a range of reasons – loss of habitat, pesticide use, climate change, competition from non-native species, and non-native parasites. As major plant pollinators, bumblebees are important to plant reproduction and the overall health of ecosystems. As the abundance of these large hairy bees has dropped in recent decades, scientists have held out hope that smaller native bee species can step in as efficient and effective alternative pollinators.

A new study indicates, however, that smaller bees, while every bit as busy as bumblebees, are not good substitutes for their bigger cousins because they remove more pollen than they transfer, thereby providing little benefit to plants. In fact, some small bees can even reduce plant fertilization by "stealing" pollen rather than spreading it to the stigma of flowers, ultimately resulting in a decline in seed production.

"We were surprised to find that some of the small pollinators were actually detrimental to the plants they visited, rather than beneficial," said Matt Koski, the study's lead author and a postdoctoral fellow in biology at the University of Virginia. "It turns out, some of these small solitary bees consume more pollen, and provide more pollen for their offspring, than they transfer between plants."

Koski's paper – which suggests that declining plant seed production, or fitness, is unlikely to be compensated for by small bees when bumblebee populations wane – is published this month in the journal Proceedings of the Royal Society: Biological Sciences.

Koski and his study colleagues at UVA and the College of Wooster in Ohio focused on the pollination of a widespread eastern North American plant, the American bellflower, or Campanula americana.

The researchers meticulously looked at how much pollen, grain by grain, was taken and deposited to each sample flower during each visit by bumblebees and two species of small bees, as well as an intermediate sized bee.

The nectar-seeking bumblebees clearly deposited at least as much pollen between flowers as they took, and, importantly, they frequently visited the female phase of flowers, carrying pollen on their hairy bodies. This resulted in highly efficient fertilization.

The small and intermediate bees, on the other hand, tended to visit the male phase of the flowers, consuming and taking more pollen than they deposited between flowers, often resulting in inefficient pollination and even negative seed productivity.

The study demonstrated that fewer bumblebee visits were required to sustain plant fitness, whereas the small solitary bees often reduced plant fitness as a result of the pollen thievery. Additionally, the stolen pollen also left less pollen for the bumblebees to transfer between plants.

"The finding really speaks to the need to maintain habitat and conditions for the proliferation of bumblebees," Koski said. "They are important pollinators for many crops and wild plants, and with less of them we could see a changing landscape."

The research was conducted in 23 plant populations spanning from southern Alabama to Minnesota. The pollinator efficiency metrics were done in Ohio, and experimental relationship between pollen grains deposited and seed set was done at UVA.

###

Media Contact

Fariss Samarrai
[email protected]
434-924-3778
@UVA

http://www.virginia.edu

Related Journal Article

http://dx.doi.org/10.1098/rspb.2018.0635

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Theory Proposes Culture as a Key Driver of Major Human Evolutionary Shift

September 15, 2025
New Research Reveals Early “Inherence” Bias in the History of Science

New Research Reveals Early “Inherence” Bias in the History of Science

September 15, 2025

NIH Awards $8.6 Million Grant to Renew Rare Disease Clinical Research Network for Neurodevelopmental Studies

September 15, 2025

Can Microbes Be Heroes? New Study Uncovers Hollywood’s Overlooked Microbial Story

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Survey Reveals Voting Trends Among Disabled Healthcare Workers

Transforming Geriatric Care: Resuscitation and Goals Explored

Exploring Acthar® Gel’s Broader Immunomodulatory Benefits

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.