• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Obesity + aging linked to Alzheimer’s markers in the brain

Bioengineer by Bioengineer
June 28, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rockville, Md. (June 28, 2018)–A new study suggests that when a high-fat, high-sugar diet that leads to obesity is paired with normal aging, it may contribute to the development of Alzheimer's disease. In addition, researchers discovered that certain areas of the brain respond differently to risk factors associated with Alzheimer's. The study is published in Physiological Reports.

Alzheimer's disease, the most common form of dementia, is a progressive brain disorder that leads to loss of cognitive skills and memory and causes significant changes in behavior. Aging is a significant risk factor for Alzheimer's. Previous studies suggest that diet-related obesity is also associated with development of the disease.

Researchers from Brock University in Ontario, Canada, looked at the effects of an obesity-inducing diet on insulin signaling (the process that tells the body how to use sugar), and markers of inflammation and cellular stress. These factors have been found to be involved in the progression of Alzheimer's disease during the aging process in mice. One group of mice received a high-fat, high-sugar diet ("HFS"), while the control group ate a normal diet. The researchers measured the animals' inflammation and stress levels in the hippocampus and the prefrontal cortex in the brain after 13 weeks on the assigned diets. They compared the brains of aged mice to those of a younger set of baseline mice. The hippocampus is near the center of the brain and is responsible for long-term memory. The prefrontal cortex, at the front of the brain, oversees complex cognitive, emotional and behavioral function.

Compared to the control group, the HFS group had significantly higher markers of inflammation, insulin resistance (altered insulin signaling) and cellular stress in areas of the hippocampus thought to be involved in the progression of Alzheimer's disease. The prefrontal cortex region of the HFS group showed more signs of insulin resistance, but inflammation and cellular stress markers did not change. The "region specific differences between the prefrontal cortex and hippocampus in response to aging with a HFS diet [indicates] that the disease pathology is not uniform throughout the brain," the researchers wrote.

The control group's inflammation levels were also increased after the trial when compared to the baseline readings. These results supports the theory that aging alone plays a role in the progression of Alzheimer's disease, and obesity exacerbates the effects of aging on brain function.

"This study provides novel information in relation to the mechanistic link between obesity and the transition from adulthood to middle age and signaling cascades that may be related to [Alzheimer's] pathology later in life," the research team wrote. "These results add to our basic understanding of the pathways involved in the early progression of [Alzheimer's] pathogenesis and demonstrate the negative effects of a HFS diet on both the prefrontal cortex and hippocampal regions."

###

Read the full article, "Evaluation of neuropathological effects of a high?fat high?sucrose diet in middle?aged male C57BL6/J mice," published in Physiological Reports.

NOTE TO JOURNALISTS: To schedule an interview with a member of the research team, please contact the [email protected]>APS Communications Office or 301-634-7209. Find more research highlights in the APS Press Room.

Physiology is the study of how molecules, cells, tissues and organs function in health and disease. Established in 1887, the American Physiological Society (APS) was the first U.S. society in the biomedical sciences field. The Society represents more than 10,500 members and publishes 15 peer-reviewed journals with a worldwide readership.

Media Contact

Stacy Brooks
[email protected]
301-634-7209
@APSPhysiology

http://www.the-aps.org

http://dx.doi.org/10.14814/phy2.13729

Share12Tweet8Share2ShareShareShare2

Related Posts

Menopause Care: Insights from Workforce Review and Consultation

February 7, 2026

LRRK2R1627P Mutation Boosts Gut Inflammation, α-Synuclein

February 7, 2026

3D Gut-Brain-Vascular Model Reveals Disease Links

February 7, 2026

Low-Inflammation in Elderly UTIs: Risks and Resistance

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Menopause Care: Insights from Workforce Review and Consultation

LRRK2R1627P Mutation Boosts Gut Inflammation, α-Synuclein

3D Gut-Brain-Vascular Model Reveals Disease Links

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.