• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

‘The eyes have it’ — Photoreceptors in marine plankton form a depth gauge to aid survival

Bioengineer by Bioengineer
June 27, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Jürgen Berger

The eyes of some marine-dwell

The eyes of some marine-dwelling creatures have evolved to act like a "depth gauge", allowing these creatures to swim in the open ocean at a certain depth .

Pioneering new research, carried out by a team of international scientists including Professor Gaspar Jekely from the University of Exeter, has shed new light on how sea-living planktonic animals use their simple eyes to measure depth in the ocean.

All eyes detect light using specialized cells called photoreceptors, of which there are two main kinds: ciliary and rhabdomeric. While crustaceans and insects have rhabdomeric photoreceptors, animals with backbones – including humans – have ciliary photoreceptors.

However, there are also several groups of animals, mostly sea-dwellers, which inherited both types of photoreceptors from their ancestors that lived millions of years ago.

The new research, carried out by experts from Exeter's Living Systems Institute and collaborators at the University of Vienna and Emory University, has given a greater understanding of how the two kinds of photoreceptors interact in such a sea dweller, shedding new light on the evolution of eyes and photoreceptors.

The researchers studied the larvae of the marine ragworm, Platynereis dumerilii. The larvae of Platynereis are free-swimming plankton. Each has a transparent brain and six small, pigmented eyes which contain rhabdomeric photoreceptors . These enable the larvae to detect and swim towards light sources. Yet the larval brain also contains ciliary photoreceptors, the role of which was previously unknown.

The new research has revealed that ultraviolet light activates these ciliary photoreceptors, whereas cyan, or blue-green light inhibits them. Shining ultraviolet light onto Platynereis larvae makes the larvae swim downwards. By contrast, cyan light activates the rhabdomeric pigmented eyes and makes the larvae swim upwards.

In the ocean, ultraviolet light is most intense near the surface, while cyan light reaches greater depths. Ciliary photoreceptors are therefore shown to help Platynereis avoid harmful ultraviolet radiation near the surface. Though if the larvae swim too deep, cyan light inhibits the ciliary photoreceptors and activates the rhabdomeric pigmented eyes. This makes the larvae swim upwards again.

The research team also used high-powered electron microscopy to show that the neural circuits containing ciliary photoreceptors exchange messages with circuits containing rhabdomeric photoreceptors – suggesting the two work together to form a 'depth gauge'.

By enabling the larvae to swim at a preferred depth, the depth gauge influences where the worms end up as adults.

Professor Gaspar Jekely, from Exeter's Living Systems Institute said: "The idea that marine animals could use light to estimate their depth has already been proposed by theoretician, but to our knowledge this is the first time that such a mechanism has been experimentally studied."

Csaba Verasztó, one of the first authors of the study added: "Detecting different types of light with different photoreceptor cells in marine plankton may have been the ancestral framework for light detection in animals."

The depth gauge in Platynereis larvae represents an important new mechanism to influence the distribution of marine animals. Its discovery should also stimulate new ideas about the evolution of eyes and photoreceptors.

Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton is published in the journal eLife.

###

ing creatures have evolved to act like a "depth gauge", allowing these creatures to swim in the open ocean at a certain depth .

Pioneering new research, carried out by a team of international scientists including Professor Gaspar Jekely from the University of Exeter, has shed new light on how sea-living planktonic animals use their simple eyes to measure depth in the ocean.

All eyes detect light using specialized cells called photoreceptors, of which there are two main kinds: ciliary and rhabdomeric. While crustaceans and insects have rhabdomeric photoreceptors, animals with backbones – including humans – have ciliary photoreceptors.

However, there are also several groups of animals, mostly sea-dwellers, which inherited both types of photoreceptors from their ancestors that lived millions of years ago.

The new research, carried out by experts from Exeter's Living Systems Institute and collaborators at the University of Vienna and Emory University, has given a greater understanding of how the two kinds of photoreceptors interact in such a sea dweller, shedding new light on the evolution of eyes and photoreceptors.

The researchers studied the larvae of the marine ragworm, Platynereis dumerilii. The larvae of Platynereis are free-swimming plankton. Each has a transparent brain and six small, pigmented eyes which contain rhabdomeric photoreceptors . These enable the larvae to detect and swim towards light sources. Yet the larval brain also contains ciliary photoreceptors, the role of which was previously unknown.

The new research has revealed that ultraviolet light activates these ciliary photoreceptors, whereas cyan, or blue-green light inhibits them. Shining ultraviolet light onto Platynereis larvae makes the larvae swim downwards. By contrast, cyan light activates the rhabdomeric pigmented eyes and makes the larvae swim upwards.

In the ocean, ultraviolet light is most intense near the surface, while cyan light reaches greater depths. Ciliary photoreceptors are therefore shown to help Platynereis avoid harmful ultraviolet radiation near the surface. Though if the larvae swim too deep, cyan light inhibits the ciliary photoreceptors and activates the rhabdomeric pigmented eyes. This makes the larvae swim upwards again.

The research team also used high-powered electron microscopy to show that the neural circuits containing ciliary photoreceptors exchange messages with circuits containing rhabdomeric photoreceptors – suggesting the two work together to form a 'depth gauge'.

By enabling the larvae to swim at a preferred depth, the depth gauge influences where the worms end up as adults.

Professor Gaspar Jekely, from Exeter's Living Systems Institute said: "The idea that marine animals could use light to estimate their depth has already been proposed by theoretician, but to our knowledge this is the first time that such a mechanism has been experimentally studied."

Csaba Verasztó, one of the first authors of the study added: "Detecting different types of light with different photoreceptor cells in marine plankton may have been the ancestral framework for light detection in animals."

The depth gauge in Platynereis larvae represents an important new mechanism to influence the distribution of marine animals. Its discovery should also stimulate new ideas about the evolution of eyes and photoreceptors.

Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton is published in the journal Elife.

###

Media Contact

Duncan Sandes
[email protected]
44-013-927-22391
@uniofexeter

http://www.exeter.ac.uk

Related Journal Article

http://dx.doi.org/10.7554/eLife.36440

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Allied Health Research Growth in Regional Australia

October 26, 2025

Boosting Midwifery Skills with Virtual Reality Learning

October 26, 2025

Effective Neonatal Tetanus Treatment: A Nigerian Case Study

October 26, 2025

STK19 Enhances Cisplatin Efficacy in Tongue Cancer

October 26, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1284 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    196 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Allied Health Research Growth in Regional Australia

Dynamic Traffic Control: Predicting Flow for Efficiency

Boosting Midwifery Skills with Virtual Reality Learning

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.