• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Key protein providing defense against ‘jumping genes’ identified

Bioengineer by Bioengineer
June 27, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Osaka University

Osaka – Though they occasionally play a role in animal development, transposons, also known as "jumping genetic elements," are in fact DNA sequences that have the potential to move to new positions within the genome. They constitute a large portion of the genome in the majority of eukaryotes, and their mobilization in the genome of the gametes–eggs and sperm- poses a threat to genomic instability, thus leading to infertility.

In animal germline cells, a specialized small RNA-based defense system, termed the Piwi-interacting RNA (piRNA) pathway, is primarily responsible for the suppression of transposon, a process known as "silencing." In the field of genetics, Drosophila (fruit fly) has been a very useful model system for studying the mechanistic details of the piRNA pathway. Elucidation of such details will be valuable in understanding disease development and progression. One important discovery is that piRNAs are loaded onto the protein Piwi, the founding member of the piRNA pathway, and translocate into the nucleus. The Piwi-piRNA complex serves the purpose of silencing transposons.

Piwi has been proposed to function with downstream partners, and one of them is the heterochromatin Protein 1a (HP1a), which reportedly enforces transposon silencing in the Drosophila germline and ovarian somatic cells. However, the effects of HP1a depletion from the germline on the piRNAs and piRNA pathway proteins have not previously been studied, causing a gap in the understanding of the HP1a functions associated with the piRNA pathway.

In their latest study, reported in Nature Communications, an international team of researchers from Temasek Life Sciences Laboratory, National University of Singapore, Nanyang Technological University, and Osaka University shed light on the function of HP1a in the piRNA pathway and transposon repression.

Using a combination of genetic, biochemical, and next generation sequencing experiments, the team led by Toshie Kai discovered HP1a function in the germline cells. The study reveals that HP1a is specifically required for repression of transposons residing in the regions close to telomeres and centromeres. HP1a helps in production of piRNAs from regions close to telomeres and centromeres by protecting the longer precursor RNAs, which are diced into small piRNAs to silence the transposons. Importantly, HP1a functions for repression of transposons at specific regions in genomes where evolutionarily-old transposons are populated.

The findings suggest that small RNA pathways have evolved in modular ways to keep transposon activities in check, not to accumulate in the genome during evolution, hence paving the way for studies to address the dynamics of small RNA-based immune systems in genome defense during evolution. Understanding this highly adaptive genome defense mechanism is also important after an increasing number of studies have highlighted their roles in disease.

###

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: http://resou.osaka-u.ac.jp/en/top

Media Contact

Saori Obayashi
[email protected]
81-661-055-886
@osaka_univ_e

http://www.osaka-u.ac.jp/en

Original Source

http://resou.osaka-u.ac.jp/en/research/2018/20180627_1 http://dx.doi.org/10.1038/s41467-018-03908-3

Share12Tweet8Share2ShareShareShare2

Related Posts

Cells Collaborate to Amplify Their Sensory Abilities

Cells Collaborate to Amplify Their Sensory Abilities

September 15, 2025
How Cheese Fungi Unravel Evolutionary Mysteries

How Cheese Fungi Unravel Evolutionary Mysteries

September 15, 2025

Grants Accelerate Training and Research in Biological Complexity

September 15, 2025

Rice Scientists Innovate ‘Molecular Magnifying Glass’ to Detect Plant Diseases Earlier

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Recurrent Patterns Shape Neocortical Sensory Inference

New Program Unveiled to Enhance Treatment for Specific Heart Failure Types

Predicting Child GI Anomaly Mortality with Random Forest

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.