• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Killer immune cells that halt malaria could hold key to new vaccines

Bioengineer by Bioengineer
June 26, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Gunjan Arora and Javier Manzella-Lapeira

Scientists have revealed that immune cells called natural killer (NK) cells may play a key role in ridding the body of malaria-infected blood cells, a study in eLife reports.

The discovery adds to knowledge of how natural immunity to malaria develops in people living in areas where the parasite is common, and provides a new mechanism that could be exploited in the mission to create a malaria vaccine.

"One of the main objectives in malaria research is to define the mechanisms by which naturally acquired antibodies provide protection," says lead author Gunjan Arora, Postdoctoral Fellow at the National Institute of Allergy and Infectious Diseases (NIAID), US. "We know that NK cells kill virus-infected cells and cancer cells, but a clear role for them in contributing to protection from malaria is yet to be established. We wanted to investigate the effects of human NK cells on malaria-infected blood cells in the presence of different human antibodies."

They started by isolating NK cells from people in the US who had never been exposed to malaria and looking at the effects on malaria-infected red blood cells in the presence of different antibodies. When incubated with antibodies from people in Mali, who have a degree of natural immunity to malaria, the NK cells became active and produced immune-stimulating molecules.

Next, the team looked at whether NK cells could kill infected red blood cells without damaging uninfected ones. They labelled NK cells, along with infected and uninfected red blood cells, and incubated them together with different antibodies. In the presence of the Mali antibodies, but not those from people in the US, the NK cells killed the infected red blood cells but left uninfected cells intact.

This led the scientists to investigate whether NK cells could also halt the growth of malaria within red blood cells. They allowed the parasites within red blood cells to go through one cycle of growth, and then counted the resulting number of newly infected cells. In the absence of antibodies, or with antibodies isolated from people in the US, NK cells blocked malaria growth by around 4-6%. When incubated with antibodies from people in Mali, the NK cells blocked growth by more than 60%. This showed that antibody-activated NK cells can stop malaria parasites from maturing into a form that can go on to infect other blood cells.

Finally, the team wanted to find the mechanism behind this antibody-driven attack by NK cells. Blood cells infected with malaria have molecules on their surface that antibodies recognize and use to attract immune cells. The team identified a molecule that was essential for activation of NK cells in response to malaria-infected blood cells. Although PfEMP1 was already known to be important in antibody recognition of malaria-infected cells, this study showed for the first time that it is crucial for activating NK cells in a manner dependent on antibodies.

"Considering the essential role of antibodies in granting clinical immunity to people living in areas of high malaria transmission, and the limited effectiveness of malaria vaccines tested so far, any immune responses that depend on antibodies warrant further investigation," says senior author Eric Long, Senior Investigator at NIAID. "Our discovery of antibody-mediated killing of malaria-infected blood cells by NK cells adds an additional immune mechanism to those already known."

###

Media Contact

Emily Packer
[email protected]
@elife

http://www.elifesciences.org

Original Source

http://elifesciences.org/for-the-press/0d619149/killer-immune-cells-that-halt-malaria-could-hold-key-to-new-vaccines http://dx.doi.org/10.7554/eLife.36806

Share12Tweet7Share2ShareShareShare1

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.