• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers discover a new type of lung cancer

Bioengineer by Bioengineer
June 25, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Vakoc Lab, CSHL

Cold Spring Harbor, NY — Researchers have discovered a new kind of small-cell lung cancer (SCLC). The discovery paves the way for developing personalized medicine approaches to target this previously unnoticed form of the disease.

"Cancer is not one thing, it's actually hundreds of distinct diseases." This common refrain helps explain the frustrating experience oncologists have in testing a promising new drug only to find that it works well in some patients but fails for the majority. Such experiences have led researchers to believe that the more they can distinguish tumor types based on meaningful biological signatures, the better chance they have of finding subsets of patients that will respond to specific drug candidates.

One type of cancer in desperate need of new drug is SCLC, a cancer without a specific treatment that often spreads early. Chemotherapy, radiotherapy, and surgery enable only 6% of patients to survive 5 years from the time of their diagnosis. About 10%-15% of all lung cancers are SCLC.

Fresh insight comes from an analysis of gene activity in human SCLC tumors that is reported today in Genes & Development. It reveals an unexpected activity pattern in around 20% of samples. The research team, led by Christopher Vakoc, M.D., Ph.D., a Cold Spring Harbor Laboratory (CSHL) Associate Professor, found a paucity of neuroendocrine markers in pulmonary neuroendocrine cells, a cell type thought to be the source of SCLC.

To further characterize this minority of cells, Vakoc and colleagues used a method they developed in 2015 that employs the gene-editing tool CRISPR to screen for specific proteins that are critical to the growth of various human cancer cell lines, including SCLC lines. Using this "CRISPR screen," the team found that a transcription factor called POU2F3 is expressed exclusively in the minority of SCLC tumors with low levels of neuroendocrine markers. It turns out that this variant form of SCLC tumors are derived from a separate class of rare cells called tuft cells.

"We were using the CRISPR screen to discover new vulnerabilities in this disease that we didn't know about before," Vakoc says. "The surprise is that in the process, we discovered a new form of lung cancer."

Developing drugs that specifically target the function of POU2F3 may be particularly effective in the subset of patients with tumors that express high levels of this transcription factor.

"In the past, we've lumped the different forms of SCLC together because they look similar on a microscope slide, but we now have some molecular tests that can easily discriminate these malignancies," says postdoctoral investigator Yu-Han Huang, first author on the new paper. "Our findings suggest that we should be designing clinical studies for them separately, to find therapies that might cater to the different types of tumor."

Vakoc's team is currently looking for collaborators to do preclinical tests in mice to test compounds that target POU2F3. They also plan to use their CRISPR-based stress test to look for variant types of pancreas cancer which they hope might provide similarly specific targets for treatments.

###

Funding: Pershing Square Sohn Cancer Research Alliance; Boehringer Ingelheim; CSHL and Northwell Health Affiliation; National Institutes of Health; National Cancer Institute; State of New York.

Citation: Huang J-H et al, " POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer," appears July 2, 2018 in Genes & Development.

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. Home to eight Nobel Prize winners, the private, not-for-profit Laboratory employs 1,100 people including 600 scientists, students and technicians. The Meetings & Courses Program annually hosts more than 12,000 scientists. The Laboratory's education arm also includes an academic publishing house, a graduate school and the DNA Learning Center with programs for middle and high school students and teachers. For more information, visit http://www.cshl.edu

Media Contact

Peter Tarr
[email protected]
516-367-5055
@genomeresearch

Cold Spring Harbor Laboratory – Advancing the frontiers of biology through education and research

Share12Tweet7Share2ShareShareShare1

Related Posts

Unraveling Gut Microbiota’s Role in Breast Cancer

September 14, 2025

How SARS-CoV-2 Spike Protein Activates TLR4

September 14, 2025

Interpretable Deep Learning for Anticancer Peptide Prediction

September 13, 2025

Navigating Shadows: Treating Anorexia and C-PTSD

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.