• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Cell-free DNA profiling informative way to monitor urinary tract infections

Bioengineer by Bioengineer
June 20, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y. – Using shotgun DNA sequencing, Cornell University researchers have demonstrated a new method for monitoring urinary tract infections (UTIs) that surpasses traditional methods in providing valuable information about the dynamics of the infection as well as the patient's biological response.

The technique is detailed in the paper "Urinary cell-free DNA is a versatile analyte for monitoring infections of the urinary tract," published June 20 in the journal Nature Communications.

UTIs are one of the most common infections in humans and occur when harmful bacteria or viruses reach parts of the urinary system, including the kidneys, bladder or urethra.

Researchers at Cornell Engineering and Weill Cornell Medicine discovered that they could learn about the bacterial and viral composition of a patient's urinary tract by isolating cell-free DNA – fragments of a dead cells' genome derived from human and microbial cells – from a urine sample.

Beyond measurement of the abundance of different components of the microbiome, urinary cell-free DNA provides a wealth of information about bacterial phenotypes, according to Iwijn De Vlaminck, professor of biomedical engineering and co-lead author of the study.

"We found that we could deduce the fraction of the bacterial population that is growing, by carefully looking at the places in the genome where the cell-free DNA was derived from" said De Vlaminck, who added that metagenomic analysis of the cell-free DNA can also be used to infer which antimicrobial drugs may work best against a particular infection.

The monitoring technique can be especially beneficial for kidney transplant recipients, according to the study's authors, which include co-lead author John Richard Lee, assistant professor of medicine at Weill Cornell Medicine, as well as Darshana Dadhania, an associate professor of medicine at Weill Cornell Medicine, and Lars Westblade, an assistant professor of pathology at Weill Cornell Medicine. Half of all kidney recipients will suffer from a bacterial UTI within the first three years of receiving the transplant, putting those patients at risk of infection related complications.

"The cell-free DNA profiling technique can diagnose rare infections that are not routinely screened for and has the potential for earlier diagnosis and treatment and improve outcomes in kidney transplantation," said Manikkam Suthanthiran, chief of nephrology, hypertension, and transplantation at Weill Cornell Medicine and co-author of the study.

The time required to test urine samples for cell-free DNA can be made comparable to traditional UTI assays, according to the researchers, and will benefit from continued technical advances in DNA sequencing that will reduce cost and increase throughput in the years to come.

###

Media Contact

Jen Gundersen
[email protected]
646-962-9497
@cornell

http://pressoffice.cornell.edu

http://dx.doi.org/10.1038/s41467-018-04745-0

Share12Tweet7Share2ShareShareShare1

Related Posts

Zharp1-163: Dual Inhibitor Tackles Inflammation, Kidney Injury

August 28, 2025

Enhancing Pediatric Nursing Education with Advanced Simulators

August 28, 2025

Stem Cell Co-Grafts Enhance Retinal Repair in Rats

August 28, 2025

Pennington Biomedical Study Suggests Metabolic Health During Pregnancy May Impact Outcomes More Than Weight Gain

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New CEA-Based Surveillance Boosts Gastric Cancer

Zharp1-163: Dual Inhibitor Tackles Inflammation, Kidney Injury

Enhancing Pediatric Nursing Education with Advanced Simulators

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.