• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Rare in-vivo study shows weak brain nodes have strong influence on memory network

Bioengineer by Bioengineer
June 20, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Our ability to learn, remember, problem solve, and speak are all cognitive functions related to different parts of our brain. If researchers can identify how those brain parts communicate and exchange information with each other, clinicians and surgeons can better understand how diseases like Alzheimer's and brain cancer affect those cognitive functions.

The majority of existing simulation studies show that the parts of the brain with high connectivity, the so-called "hubs", are most important when it comes to several different cognitive tasks. But the results of a recent and rare in-vivo study just published in Nature Communications demonstrate that the nucleus accumbens (NAc) – a part of the brain with weak connections – plays an unexpectedly influential role in enhancing the memory network.

The study was led by Gino Del Ferraro, Research Associate in the Levich Institute at the City College of New York in collaboration with a team of CCNY researchers and a group of researchers at Instituto de Neurosciencia in Spain, led by Andrea Moreno. Del Ferraro and team provided the theoretical analysis, modeling and predictions, while the Spanish team performed the in-vivo validations of the predictions.

The study's goal was to identify which areas of the brain could be stimulated to enhance memory by identifying which are the influential nodes in the memory brain network within the three different areas for brain integration: hippocampus, prefontal cortex and nucleus accumbens (NAc).

Previous studies of cognitive tasks showed the NAc was downstream of the hippocampus and the prefontal cortex and thus not influential for brain integration. In fact Del Ferraro and team proved that, for memory formation, the NAc is upstream and influential.

The results of the CCNY-led research are worth noting, as is the methodology used to achieve them. Del Ferraro observes: "The effects of removing a node from a network has been studied with simulations, both for human and animal brain networks, but direct in-vivo validations are rare. Thus, up to this point, there was no well-grounded approach to predict which nodes are essential for brain integration."

Del Ferraro and team are currently collaborating with Memorial Sloan Kettering Cancer Center in NYC, trying to apply similar techniques on people who have brain cancer in the language parts of the brain. They are attempting to identify which are the essential nodes for language production so that if patients undergo neural surgery, the surgeon knows which parts of the brain need to be preserved.

###

Media Contact

Rebecca Rivera
[email protected]
212-650-7028

http://www2.ccny.cuny.edu

https://www.ccny.cuny.edu/news/rare-vivo-study-ccny-led-team-shows-weak-brain-nodes-have-strong-influence-memory-network

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-04718-3

Share12Tweet7Share2ShareShareShare1

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.