• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Towards personalised medicine: One type of data is not enough

Bioengineer by Bioengineer
June 20, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: EMBL-EBI

19 June, Heidelberg, Hinxton – EMBL researchers have designed a computational method to jointly analyse multiple types of molecular data from patients in order to identify molecular signatures that distinguish individuals. The method is called Multi-Omics Factor Analysis (MOFA), and was published in Molecular Systems Biology today. MOFA could be particularly useful for understanding cancer development, improving diagnosis and suggesting new directions for personalised treatment.

The researchers tested their new method on multi-omics data collected from 200 leukaemia patients. MOFA identified a series of factors that highlight the molecular variability between patients. This information could help researchers understand how cancer develops at an individual level. It could also help steer personalised treatment decisions.

"The big challenge in cancer is that each patient's disease is different from a molecular point of view and has a unique set of molecular features that have led to its development," explains Ricard Argelaguet, Predoctoral Fellow in the Stegle group at the European Bioinformatics Institute (EMBL-EBI). "Our method allows researchers to do something that couldn't be done before – to easily integrate complex molecular data from DNA, RNA, methylation and more to build a tumour's molecular profile. Using these profiles, the method can also stratify patients into groups that may benefit from different types of treatment."

"Our objective was to come up with a method that could easily be used by clinical researchers, so we worked with colleagues from the field to understand their needs and challenges," continues Britta Velten, Predoctoral Fellow in the Huber group at EMBL Heidelberg. "We combined expertise from maths, statistics, machine learning, biology and clinical medicine to come up with a robust and practical method, which will hopefully help researchers in a clinical setting to improve cancer diagnosis and treatment."

In a second application, the researchers also used MOFA to analyse multi-omics data at single-cell resolution. They are currently working on further improving the method so that it can cope with even larger data sets and additional experimental designs.

What is multiomics data?

Multi-omics approaches integrate data from the genome, epigenome, transcriptome, metabolome, and other molecular data. These data types have different properties and dimensions and are difficult to integrate into a comprehensive analysis to build an individual's molecular profile.

However, by combining multiple molecular data types (multi-omics), researchers can identify biomarkers – naturally occurring molecules, genes or molecular characteristics associated with a particular disease. Biomarkers are essential for clinical research and can be used to classify patients into different patient groups. By measuring biomarkers, we can understand a patient's disease better and estimate what kind of treatment they will respond to best.

###

MOFA is available as open source software at https://github.com/bioFAM/MOFA with extensive documentation and tutorials.

Media Contact

Oana Stroe
[email protected]
0044-796-486-2072

http://www.ebi.ac.uk

Original Source

https://www.ebi.ac.uk/about/news/press-releases/multi-omics-factor-analysis http://dx.doi.org/10.15252/msb.20178124

Share13Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.