• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chemical ‘caryatids’ improve the stability of metal-organic frameworks

Bioengineer by Bioengineer
June 20, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: B. Smit/EPFL

"Metal-organic frameworks" (MOFs) are materials with nano-sized pores in their crystal structure. These pores allow MOFs to capture molecules so efficiently that they are now prime candidates in applications like carbon capture and water filtering.

The challenge with MOFs is their mechanical stability. The materials are vulnerable to physical and chemical stress, which can affect their structure and, ultimately, their performance. Because many MOF applications involve cycling between different temperatures, varying pressures, and other chemical molecules exerting capillary forces, it has become paramount to the field that MOFs feature sufficient mechanical stability.

Now, the lab of Berend Smit at EPFL Sion with Lev Sarkisov of the University of Edinburgh have discovered how the mechanical properties of MOFs relate to their structure, which has long been an obstacle in optimizing the stability of the materials.

For this study, the scientists focused on a popular type of MOFs called "zeolitic imidazolate frameworks", which are used in carbon capture, catalysis, and even some drug delivery strategies. The team developed software that generates chemical structures to design large numbers of these MOFs with different molecular structures. By studying these, they were able to extract principles that connect the mechanical properties of a MOF to its structure, as well as design materials with enhanced mechanical stability.

The researchers then "decorated" the organic parts of the MOFs with a variety of functional groups, a term that refers to groups of atoms that give the molecule (in this case, the MOF) specific characteristic properties. This part of the study showed that, depending on the pore structure, the same functional groups can either harden a MOF's structure and enhance its mechanical stability, or soften it and make it unstable.

The key to the effects of functional groups lies in what are called "nonbonded interactions", which occur between atoms with no chemical bonding. Nonbonded interactions include electrostatic and Van der Waals interactions – the latter governs the formation of water droplets.

The EPFL scientists found that nonbonded interactions play an important role in the stiffness of MOFs. This means that strategically placed functional groups can help tune the mechanical stability of a MOF by introducing extra connectivity between its atoms via nonbonded interactions.

The authors describe the functional groups that help carry the mechanical load applied to the MOF as "chemical Caryatids", referring to the statues of women that acted as supporting columns for structures in ancient Greece, most famously those of the Erechtheion on the Acropolis at Athens.

"The addition of a functional group may look a decoration, but if it is strategically placed, it provides an essential reinforcement of the MOF structure," says Berend Smit "In our lab, we have developed the software that experimental groups can use to predict whether adding different functional groups enhances the mechanical stability of their material."

###

Contributors

University of Edinburgh
University of California Berkeley

Funding

European Research Council (ERC) Horizon 2020

Reference

Seyed Mohamad Moosavi, Peter G. Boyd, Lev Sarkisov, Berend Smit. Improving the mechanical stability of metal?organic frameworks using chemical Caryatids. ACS Central Science. DOI: 10.1021/acscentsci.8b00157

Media Contact

Nik Papageorgiou
[email protected]
41-216-932-105
@EPFL_en

http://www.epfl.ch/index.en.html

Related Journal Article

http://dx.doi.org/10.1021/acscentsci.8b00157

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Nautilus Shells: Conservation, Crafts, and Legal Challenges

August 28, 2025
EBLN3P Enhances Gastric Cancer Growth and Spread

EBLN3P Enhances Gastric Cancer Growth and Spread

August 28, 2025

Two Fish Species, Two Strategies: A Novel Model Unveils Insights into Working Memory

August 28, 2025

Not All Calories Are Created Equal: How Ultra-Processed Foods Impact Men’s Health

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gastrointestinal Effects of Incretin Obesity Drugs Explored

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

New CEA-Based Surveillance Boosts Gastric Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.