• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bees love blue fluorescent light, and not just any wavelength will do

Bioengineer by Bioengineer
June 19, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CORVALLIS, Ore. – Researchers at Oregon State University have learned that a specific wavelength range of blue fluorescent light set bees abuzz.

The research is important because bees have a nearly $15 billion dollar impact on the U.S. economy – almost 100 commercial crops would vanish without bees to transfer the pollen grains needed for reproduction.

"The blue fluorescence just triggered a crazy response in the bees, told them they must go to it," said the study's corresponding author, Oksana Ostroverkhova. "It's not just their vision, it's something behavioral that drives them."

The findings are a powerful tool for assessing and manipulating bee populations – such as, for example, if a farmer needed to attract large numbers of bees for a couple of weeks to get his or her crop pollinated.

"Blue is broad enough wavelength-wise that we needed to figure out if it mattered to the bees if the light emitted by the sunlight-illuminated trap was more toward the purple end or the green end, and yes, it mattered," Ostroverkhova said. "What's also important is now we've created traps ourselves using stage lighting filters and fluorescent paint – we're not just reliant on whatever traps come in a box. We've learned how to use commercially available materials to create something that's very deployable."

Fluorescent light is what's seen when a fluorescent substance absorbs ultraviolet rays or some other type of lower-wavelength radiation and then immediately emits it as higher-wavelength visible light – think about a poster whose ink glows when hit by the UV rays of a blacklight.

Like humans, bees have "trichromatic" vision: They have three types of photoreceptors in their eyes.

Both people and bees have blue and green receptors, but the third type for people is red while the third kind for bees is ultraviolet – electromagnetic energy of a lower wavelength that's just outside the range of human vision.

Flowers' vibrant colors and patterns – some of them detectable only with UV sight – are a way of helping pollinators like bees find nectar, a sugar-rich fluid produced by plants. Bees get energy from nectar and protein from pollen, and in the process of seeking food they transfer pollen from a flower's male anther to its female stigma.

Building on her earlier research, Ostroverkhova, a physicist in OSU's College of Science, set out to determine if green fluorescence, like blue, was attractive to bees. She also wanted to learn whether all wavelengths of blue fluorescence were equally attractive, or if the drawing power tended toward the green or violet edge of the blue range.

In field conditions that provided the opportunity to use wild bees of a variety of species – most bee-vision studies have been done in labs and used captive-reared honeybees – Ostroverkhova designed a collection of bee traps – some non-fluorescent, others fluorescent via sunlight – that her entomology collaborators set up in the field.

Under varying conditions with a diverse set of landscape background colors, blue fluorescent traps proved the most popular by a landslide.

Researchers examined responses to traps designed to selectively stimulate either the blue or the green photoreceptor using sunlight-induced fluorescence with wavelengths of 420 to 480 nanometers and 510 to 540 nanometers, respectively.

They found out that selective excitation of the green photoreceptor type was not attractive, in contrast to that of the blue.

"And when we selectively highlighted the blue photoreceptor type, we learned the bees preferred blue fluorescence in the 430- to 480-nanometer range over that in the 400-420 region," Ostroverkhova said.

###

Findings were recently published in the Journal of Comparative Physiology A. The Agricultural Research Foundation and OSU supported this research.

Media Contact

Oksana Ostroverkhova
[email protected]
541-737-1679
@oregonstatenews

http://oregonstate.edu/

http://bit.ly/2lg7Lmv

Related Journal Article

http://dx.doi.org/10.1007/s00359-018-1269-x

Share12Tweet8Share2ShareShareShare2

Related Posts

Precise Assembly of Nanopore Sequencing in Pathogenic Bacteria

Precise Assembly of Nanopore Sequencing in Pathogenic Bacteria

August 28, 2025
Tiny Fossils Reveal Major Insights into Arthropod Evolution

Tiny Fossils Reveal Major Insights into Arthropod Evolution

August 28, 2025

MicroRNA-25-3p Boosts Pancreatic Cancer Progression via EVs

August 28, 2025

Exploring Histopathology in Peste des Petits Ruminants

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Volumetric Amide-Proton Transfer Imaging Differentiates Pediatric Gliomas

Lactylation Risk Signature Unveiled in Prostate Cancer

Comparative Analysis of Cissus Leaf Characteristics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.