• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Rewiring plant defence genes to reduce crop waste

Bioengineer by Bioengineer
June 18, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Plants can be genetically rewired to resist the devastating effects of disease – significantly reducing crop waste worldwide – according to new research into synthetic biology by the University of Warwick.

Led by Professor Declan Bates from the Warwick Integrative Synthetic Biology Centre (WISB) and Professor Katherine Denby from the University of York, who is also an Associate member of WISB, researchers have developed a genetic control system that would enable plants to strengthen their defence response against deadly pathogens – so they could remain healthy and productive.

When pathogens attack crop plants, they obtain energy and nutrients from the plant but also target the plant's immune response, weakening defence, and making the plants more vulnerable.

Building on experimental data generated by Prof. Denby, Professor Bates' group simulated a pathogen attack in Arabidopsis plants, and modelled a way to rewire the plants' gene network, creating a defensive feedback control system to combat disease – which works in much the same way as an aircraft autopilot.

Just as an aircraft's autopilot control system detects disturbances like wind gusts or turbulence and acts to reject them, this new plant control system detects a pathogen attack, and prevents the pathogen weakening the plants' defence response.

This method could render crops more resilient against disease, helping mitigate crop wastage throughout the world. Since the system can be implemented by re-wiring plants' natural defence mechanisms, no external genetic circuitry needs to be added.

Declan Bates, Professor of Bioengineering at the University of Warwick's School of Engineering, commented:

"Disease, drought and extreme temperatures cause significant yield losses in crop plants all over the globe, threatening world food security. It is therefore crucial to explore new ways to develop crops that are resilient to pathogen attacks and can maintain yields in challenging environments. This study shows the enormous potential of using feedback control to strengthen plants' natural defence mechanisms."

Katherine Denby, Professor of Sustainable Crop Production and Director of the N8 AgriFood Resilience Programme at the University of York commented:

"Minimising crop waste is obviously an essential part of creating a more sustainable food system. What is exciting here is applying engineering principles to plant biology to predict how to re-design plant gene regulation to enhance disease resistance. We use re-wiring of existing genes in the plant to prevent pathogen manipulation".

The next steps of the research will be to take the theory into the lab, and experimentally implement the defensive feedback control system in plants.

###

Media Contact

Tom Frew
[email protected]
@warwicknewsroom

http://www.warwick.ac.uk

Share12Tweet7Share2ShareShareShare1

Related Posts

Bacterial Resistance to Heavy Metals and Chromium Reduction

Bacterial Resistance to Heavy Metals and Chromium Reduction

September 18, 2025
Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

September 17, 2025

3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

September 17, 2025

Wild Chimpanzees Consume the Equivalent of Several Alcoholic Drinks Daily, Study Finds

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Can Hayabusa2 Land? New Research Shows Target Asteroid is Smaller and Moves Quicker Than Previously Believed

Lung Ultrasound and Heart Index Predict Preterm Infant Outcomes

AI Delegation May Boost Dishonest Behavior

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.