• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Novel information about the effects of in vitro fertilization on embryonic growth

Bioengineer by Bioengineer
June 18, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It is known that in vitro fertilization, IVF, can affect the size of the newborns. Children derived from fresh embryo transfer have smaller birth weight, and surprisingly, children derived from frozen embryo transfer have subtly higher birth weight in average.

In the study conducted by University of Helsinki, Helsinki University Hospital and University of Tartu, the researchers looked for mechanisms how the IVF can alter the embryonic growth. More than three percent of newborns are derived from IVF treatments currently in Finland.

86 couples with IVF derived pregnancies and 157 couples with spontaneous pregnancies as controls were recruited for this study. IVF samples were divided in two groups depending on whether the embryos were transferred in utero fresh after fertilization, or after they were frozen and thawed before the transfer.

The regulation region of two growth genes, insulin-like growth factor 2 and H19 was examined. A common genetic variation in this region has been associated with different amount of epigenetic marks depending on which variants an individual has inherited from the parents.

DNA methylation, the most well-known epigenetic mark was investigated in this study. These methyl groups bind to the DNA strand and affect the gene function.

"We divided the placentas in genotypes according to the variants which the newborns had inherited, and we observed that the effect of IVF on the epigenetic marks depends on the genotype." explains Adjunct professor Nina Kaminen-Ahola, the leader of the research team at the University of Helsinki.

Furthermore, the birth weight and placental weight as well as the head circumference of newborns, which were derived from fresh embryo transfer, were smaller only in one particular genotype. Also, the newborns with this genotype, who were derived from frozen embryo transfer, were significantly heavier.

"This work together with our previous work about the effects of prenatal alcohol exposure on embryonic development, reveals a genotype-specific effects of environmental factors." states Kaminen-Ahola. "As far as I know, this is the first genetic factor which has been associated with the phenotype of IVF-derived newborns".

"This single nucleotide polymorphism locates in the binding site of a regulatory protein, and thus could affect the binding of the protein as well as gene function in altered environmental conditions. However, the effect of this variation on the regulation of these growth genes should be examined by functional studies."

Kaminen-Ahola emphasizes that these changes are not dangerous and IVF treatments are safe. "Low birth weight has been associated with increased risk for heart and vascular diseases and therefore it is necessary to understand the mechanisms underlying it to develop the IVF methods".

"In the future, this could be a part of personalized medicine and help to target the sources of health care system more specifically."

###

Media Contact

Nina Kaminen-Ahola
[email protected]
358-504-482-768
@helsinkiuni

http://www.helsinki.fi/university/

https://www.helsinki.fi/en/news/health/novel-information-about-the-effects-of-in-vitro-fertilization-on-embryonic-growth

Related Journal Article

http://dx.doi.org/10.1186/s13148-018-0511-2

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Uncovering Hidden Carbon Dioxide Absorption: Russian Scientists Reveal Plant Roots’ Secret Role

October 27, 2025
blank

Bumblebees Respond to Female Signals in Short Range

October 27, 2025

Impact of Nitrogen Stress on Tobacco Metabolism

October 27, 2025

Once Tadpoles Lose Their Lungs, They Never Regrow Them, Scientists Find

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1286 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Darbepoetin-alpha Regulates Apelin and Galectin-3 in Insulin Resistance

Darbepoetin-alpha Regulates Apelin and Galectin-3 in Insulin Resistance

Uncovering Hidden Carbon Dioxide Absorption: Russian Scientists Reveal Plant Roots’ Secret Role

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.