• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Minimalist biostructures designed to create nanomaterials

Bioengineer by Bioengineer
June 14, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: IBB-UAB

Researchers of the Institute of Biotechnology and Biomedicine (IBB-UAB) have achieved to generate 4 peptides -molecules smaller than proteins – capable of self-assembling in a controlled manner to form nanomaterials. The research, published in the journal ACS Nano, was conducted by Salvador Ventura, Marta Díaz Caballero and Susanna Navarro (IBB-UAB), and included the collaboration of Isabel Fuentes and Francesc Teixidor (Institute of Materials Science of Barcelona, ICMAB-CSIC).

The new molecules are formed by a chain of 7 amino acids, each of which are made up of only two different amino acids; thus, significantly speeding up and reducing the price of the process of creation of functional synthetic amyloid structures with which to generate nanomaterials to be used in biomedicine and nanotechnology.

In biotechnology, generating functional synthetic amyloid structures to form nanostructures by imitating the natural generation process is not new. The assembly of proteins into stable fibres allows creating supramolecular shapes which no isolated protein can create, and which are used as nanoconductors, photovoltaic structures, biosensors and catalysts.

Quite recently, prion protein sequences – also amyloids – began to be imitated to form nanomaterials. The interest in these sequences lies in the fact that the proteins assemble in a slower and more controlled manner, forming highly ordered non-toxic nanostructures. However, the fact that the sequence is so long, with over 150 amino acids, makes it very difficult and expensive to synthesise.

"We have demonstrated that an adequate design can permit the size of synthetic prion sequences to be reduced down to only 7 amino acids, while conserving the same properties. The four peptides we have fabricated are the shortest structures of this type created until now and capable of forming stable fibril assemblies," explains Salvador Ventura, researcher at the IBB and the UAB Department of Biochemistry and Molecular Biology.

Examples Which Demonstrate Their Efficacy

In the study, researchers verified the stability and functionality of the four fabricated peptides. They built one of the most degradation-resistant biological nanomaterials described to date, nanocables covered in silver which can act as electrical nanoconductors and fibrillar mini enzymes capable of acting as catalysts in the formation of organic nanomaterials.

The new molecules have numerous applications, but researchers aim to focus on "the generation of electrical nanoconductors, and make use of the knowledge of the amyloid structure to generate synthetic fibres capable of being catalysts for new chemical reactions. The final objective will be to generate hybrid peptide-inorganic materials capable of making complex reactions, as those created by the photosystems of plants," the IBB researcher points out.

Prion Domains, at the Heart of the Matter

In order to generate new peptides, IBB researchers based their work on specific sequences of prion proteins, known as prion domains (PrDs). "We studied which amino acids are more frequent and how they are distributed in these regions, demonstrating that only 4 different types of amino acids distributed in a specific manner and always combined by a fifth type of amino acid is sufficient to have the complete code needed to form synthetic prion fibres. In fact, each of the heptapeptides (mini-PrDs) designed only contains two different types of amino acids," says Salvador Ventura.

The study demonstrates the assembling ability of mini-PrDs into highly ordered nanostructures, a process thought to be impossible given the large presence of polar amino acids. The resulting peptides are more polar than any other similarly-sized peptide used until now to form synthetic amyloids; this, for example, allows them to function in the same conditions as natural enzymes.

This study has served to help researchers of the IBB Protein Folding and Conformational Diseases group, directed by Dr Ventura, to open a new line of research focused on the design of nanomaterials.

"We have never worked on nanotechnology, but at the same time we have always had it near, because our strength lies in the knowledge of the molecular mechanism of protein assembly into amyloid structures. For a long time we have been working to create strategies with which to avoid this phenomenon in neurodegenerative diseases. This knowledge has allowed us to design new molecules which we now propose for the fabrication of new nanomaterials," Dr Ventura concludes.

###

Media Contact

Maria Jesus Delgado
[email protected]
34-935-814-049
@UAB_info

http://www.uab.es

Original Source

http://www.uab.cat/web/newsroom/news-detail-1345668003610.html?noticiaid=1345765237813 http://dx.doi.org/10.1021/acsnano.8b00417

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Complete Chloroplast Genome of Cyathea delgadii Revealed

September 11, 2025
blank

Scientist, Advocate, and Entrepreneur Lucy Shapiro Honored with Lasker-Koshland Special Achievement Award

September 11, 2025

Zoology Spotlight: Octopuses Always Use Their Best Arm for Every Task

September 11, 2025

Drivers of Human-Gaur Conflict in Tamil Nadu

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Complete Chloroplast Genome of Cyathea delgadii Revealed

Smart ROS Nanoplatform Boosts Targeted Cancer Therapy

Creating AI Companions for Caregiver Role Transitions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.