• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers found novel structure in the ‘antennae’ of light-sensing neurons

Bioengineer by Bioengineer
June 13, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Baylor College of Medicine

Scientists at Baylor College of Medicine and Radboud University Medical Center in the Netherlands have discovered that the antennae-like structures on light-sensing neurons, called photoreceptors, have a unique feature not observed in the 'antennae' or cilia of other types of cells. The study, published in the Journal of Cell Biology, reveals that this novel functional zone plays a structural role that is essential for the function of the photoreceptors and also helps explain why mutations on certain cilia proteins, although present throughout the body, only affect cilia on photoreceptors, causing non-syndromic blindness.

"Practically all cells in the body have a single cilium called the primary cilium that seems to allow cells to sense their environment. The primary cilia on photoreceptors, for instance, specialize in sensing light," said first author Rachayata Dharmat graduate student of molecular and human genetics in the lab of Dr. Rui Chen.

"Our lab focuses on understanding the molecular mechanisms and gene variants underlying human retinal disease," said Chen, professor of molecular and human genetics and in the Human Genome Sequencing Center as well as member of the Dan L Duncan Comprehensive Cancer Center at Baylor College of Medicine.

Previous work in the Chen lab discovered that the SPATA7 gene is expressed in all primary cilia in the body, but, surprisingly, when this gene mutated, only the primary cilia in photoreceptors were affected. The photoreceptors lose their ability to function causing visual impairment. Why this happens is what this group tried to answer.

"We began our investigation by determining which proteins interact with SPATA7 protein. We identified a number of SPATA7-binding proteins and others that do not to bind SPATA7. Both types localize in the photoreceptors' connecting cilium, which is a specialized form of the transition zone in all cilia that connects the cilium with the body of the neuron," said Dharmat. "The connecting cilium is very small, about 1.5 microns long. Compare it to a human hair, which can be between 17 and 180 microns thick. This is the first time researchers have looked at proteins within this very small region and, in particular, proteins interacting with SPATA7."

Perseverance and high-resolution techniques helped uncover a biological mystery

Using state-of-the-art super-resolution microscopy (STORM) coupled with cryo-electron tomography and genetic models, the researchers discovered that when SPATA7 was present, SPATA7-binding proteins localized throughout the connecting cilium. But in the absence of SPATA7, the binding proteins concentrated at the base of the cilium in a region closest to the body of the neuron, the researchers called it the proximal region, leaving a distal region empty of SPATA7-binding proteins. Chen, Dharmat and their colleagues also observed that proteins that did not bind to SPATA7 always localized in the proximal region, both when SPATA7 was present and absent.

This suggested a new concept; that there are two distinct regions within the connecting cilium of photoreceptors. One is the proximal zone, where all ciliary proteins reside. The other region is the distal region, where SPATA7-binding proteins localize when SPATA7 is available. The researchers hypothesized that SPATA7 either takes the proteins to the distal region or is required to maintain them there, thereby supporting a long, elaborate connecting cilium structure unique to photoreceptors.

Additional experiments showed that the absence of SPATA7 disrupts protein localization and the stability of microtubules, structures that provide structural integrity to the cilia, specifically in the distal region of the connecting cilium.

"Cilia in other cell types also have SPATA7, but these cilia do not have a distal region in the transition zone like the one we discovered in cilia of photoreceptors, therefore they are not affected when SPATA7 is mutated," Dharmat said.

"The presence of this unique distal zone exclusively in the cilia of photoreceptors also explains the biological mystery of non-syndromic blindness observed in both patients and mouse models, that loss of certain transition zone proteins only causes degeneration of cilia in photoreceptors without affecting the cilia on other cell types," Dharmat said.

This research brings to light a novel sub-cellular structure in the cilium of photoreceptors, its biochemical components and its impact on the function of the cilia, all of which contribute to a better understanding of both genetic disorders and the structure of cilia in the retina.

###

Other contributors to this work include Aiden Eblimit, Michael A. Robichaux, Zhixian Zhang, Thanh-Minh T. Nguyen, Sung Yun Jung, Feng He, Antrix Jain, Yumei Li, Jun 4 Qin, Paul Overbeek, Ronald Roepman, Graeme Mardon and Theodore G Wensel. The authors are affiliated with Baylor College of Medicine or Radboud University Medical Center, The Netherlands.

This project was funded by the Retina Research Foundation, National Eye Institute R01EY022356, R01EY020540, R01-EY026545, R01-EY07981 and F32EY027171. Suport was also provided by the European Community's Seventh Framework Programmes FP7/2009 under grant agreement no: 241955 684 (SYSCILIA) and by the Netherlands Organization for Scientific Research 685 (NWO Vici-865.12.005).

Media Contact

Allison Mickey
[email protected]
713-798-4710
@bcmhouston

https://www.bcm.edu/news

Original Source

https://www.bcm.edu/news http://dx.doi.org/10.1083/jcb.201712117

Share15Tweet7Share2ShareShareShare1

Related Posts

New 18F-labeled Compound Targets COX-2 Imaging

August 27, 2025

New Study Highlights Positive Impact of Diet and Exercise on Alcohol-Induced Liver Damage

August 27, 2025

CytoSorb® Enhanced Hemadsorption in Cardiac Surgery Outcomes

August 27, 2025

Amino Acids Drive Metabolic Dysfunction in Pulmonary Fibrosis

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New 18F-labeled Compound Targets COX-2 Imaging

New Study Highlights Positive Impact of Diet and Exercise on Alcohol-Induced Liver Damage

CytoSorb® Enhanced Hemadsorption in Cardiac Surgery Outcomes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.