• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New opportunities for studying the activity of neural networks in real time

Bioengineer by Bioengineer
June 13, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Lobachevsky University

During the last decade, neurobiologists's attention has been focused on the study of the functioning of neural networks rather than single nerve cells. It is at this level that the key functions of the brain (processing, storage and transmission of information) are performed. However, researchers are facing some methodological difficulties in the investigation of neural networks. Traditional methods, for example, those aimed at studying the electrical and metabolic activity of single neurons do not provide any insight into a network's architectonics or its functional features. Commonly used methods such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), or classical biochemical methods are not applicable to the study of neural networks, since they do not allow experiments on live cells (biological samples must be fixed) and lead to the destruction of the bonds between the cells.

Scientists at the National Research Lobachevsky State University of Nizhny Novgorod have for the first time in Russia successfully used and optimized a method to determine the level of mRNA expression in living, actively functioning cells. This method is based on the use of gold RNA probes developed by Merck, Germany.

Due to their small size and exceptional properties, the RNA probes easily penetrate the cell and are capable of fluorescing after specifically binding to the target mRNA. The mRNA visualization is carried out by microscopy and does not require additional manipulations for the experimental sample preparation.

From the level of mRNA expression, one can judge about the activity of protein synthesis in the cell, both in normal state and under the influence of various stress factors.

According to Maria Vedunova, Director of the UNN Institute of Biology and Biomedicine, the use of RNA probes in combination with calcium imaging, a method for determining the metabolic activity of neural networks, made it possible to investigate the activity of those cells in the network where the mRNA of interest to researchers are synthesized.

"This complex of methods allowed Nizhny Novgorod scientists to make progress in the development of new approaches to protecting brain cells during hypoxia. The approach is based on the use of neurotrophic factors BDNF (brain-derived neurotrophic factor) and GDNF (glial-derived neurotrophic factor). These signal molecules are synthesized in the human body and regulate the differentiation of nerve cells, the growth of neuronal processes and the formation of contacts between cells (synapses)," explains Maria Vedunova.

It has been shown in this study that during hypoxia, BDNF and GDNF inhibit nerve cell death and maintain neuronal viability. Some features of the molecular mechanisms of neurotrophic factors' action in hypoxia were revealed, as well as the influence of one neurotrophic factor on the expression level of the other one.

Thus, it has been proved that RNA probes provide an informative method for neurobiological studies and open new prospects for studying the mechanisms of brain functioning in normal conditions and under unfavorable effects of stress factors.

###

Media Contact

Nikita Avralev
[email protected]

http://www.unn.ru/eng/

Related Journal Article

http://dx.doi.org/10.1134/S1990747818020095

Share12Tweet7Share2ShareShareShare1

Related Posts

Auricular Acupuncture Effective for Tension-Type Headaches

August 27, 2025

New 18F-labeled Compound Targets COX-2 Imaging

August 27, 2025

New Study Highlights Positive Impact of Diet and Exercise on Alcohol-Induced Liver Damage

August 27, 2025

CytoSorb® Enhanced Hemadsorption in Cardiac Surgery Outcomes

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Smallholder Dairy Farmers Embrace On-Farm Food Safety

Early vs. Delayed Extubation in Brain Metastasis Surgery

Auricular Acupuncture Effective for Tension-Type Headaches

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.