• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A new kind of vaccine based on spider silk

Bioengineer by Bioengineer
June 12, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © Laboratoire Bourquin – UNIGE

To fight cancer, researchers increasingly use vaccines that stimulate the immune system to identify and destroy tumour cells. However, the desired immune response is is not always guaranteed. In order to strengthen the efficacy of vaccines on the immune system – and in particular on T lymphocytes, specialized in the detection of cancer cells – researchers from the universities of Geneva (UNIGE), Freiburg (UNIFR), Munich, and Bayreuth, in collaboration with the German company AMSilk, have developed spider silk microcapsules capable of delivering the vaccine directly to the heart of immune cells. This process, published in the journal Biomaterials, could also be applied to preventive vaccines to protect against infectious diseases, and constitutes an important step towards vaccines that are stable, easy to use, and resistant to the most extreme storage conditions.

Our immune system is largely based on two types of cells: B lymphocytes, which produce the antibodies needed to defend against various infections, and T lymphocytes. In the case of cancer and certain infectious diseases such as tuberculosis, T lymphocytes need to be stimulated. However, their activation mechanism is more complex than that of B lymphocytes: to trigger a response, it is necessary to use a peptide, a small piece of protein which, if injected alone, is rapidly degraded by the body even before reaching its target.

"To develop immunotherapeutic drugs effective against cancer, it is essential to generate a significant response of T lymphocytes,» says Professor Carole Bourquin, a specialist in antitumor immunotherapies at the faculties of medicine and science of the UNIGE, who directed this work. "As the current vaccines have only limited action on T-cells, it is crucial to develop other vaccination procedures to overcome this issue."

A virtually indestructible capsule

Scientists used synthetic spider silk biopolymers–a lightweight, biocompatible, non-toxic material that is highly resistant to degradation from light and heat. "We recreated this special silk in the lab to insert a peptide with vaccine properties,» explains Thomas Scheibel, a world specialist of spider silk from the University of Bayreuth who participated in the study. "The resulting protein chains are then salted out to form injectable microparticles."

Silk microparticles form a transport capsule that protects the vaccine peptide from rapid degradation in the body, and delivers the peptide to the center of the lymph node cells, thereby considerably increasing T lymphocyte immune responses. "Our study has proved the validity of our technique", reveals Carole Bourquin. "We have demonstrated the effectiveness of a new vaccination strategy that is extremely stable, easy to manufacture and easily customizable."

Towards a new vaccine model

The synthetic silk biopolymer particles demonstrate a high resistance to heat, withstanding over 100°C for several hours without damage. In theory, this process would make it possible to develop vaccines that do not require adjuvants and cold chains. An undeniable advantage, especially in developing countries where one of the great difficulties is the preservation of vaccines. One of the limitations of this process, however, is the size of the microparticles: while the concept is in principle applicable to any peptide, which are all small enough to be incorporated into silk proteins, further research is needed to see if it is also possible to incorporate the larger antigens used in standard vaccines, especially against viral diseases.

When science imitates nature

"More and more, scientists are trying to imitate nature in what it does best", adds Scheibel. "This approach even has a name: bioinspiration, which is exactly what we have done here." The properties of spider silk make it a particularly interesting product: biocompatible, solid, thin, biodegradable, resistant to extreme conditions and even antibacterial, one can imagine multiple applications, including wound dressings or sutures.

###

Media Contact

Carole Bourquin
[email protected]
41-223-790-701
@UNIGEnews

http://www.unige.ch

Original Source

https://www.unige.ch/communication/communiques/en/2018/la-soie-daraignee-pour-des-vaccins-dun-nouveau-genre/ http://dx.doi.org/10.1016/j.biomaterials.2018.04.008

Share12Tweet8Share2ShareShareShare2

Related Posts

New Malawi Study Finds Breathlessness Significantly Raises Long-Term Mortality Risk

September 11, 2025

Meta-analysis reveals parent-focused programs fall short in preventing toddler obesity; researchers urge new strategies for childhood obesity prevention

September 11, 2025

Study Finds Digital Alzheimer’s Resources Still Limited for Latinos and Hispanics in Los Angeles Years After COVID-19

September 11, 2025

Global Decline in Chronic Disease Deaths Slows, New Study Reveals

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    62 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Malawi Study Finds Breathlessness Significantly Raises Long-Term Mortality Risk

Global Decline in Chronic Disease Deaths Continues, but Progress Shows Signs of Slowing

Meta-analysis reveals parent-focused programs fall short in preventing toddler obesity; researchers urge new strategies for childhood obesity prevention

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.