• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Solar cells combining silicon with perovskite have achieved record efficiency of 25.2 percent

Bioengineer by Bioengineer
June 11, 2018
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: EPFL

In the field of photovoltaic technologies, silicon-based solar cells make up 90% of the market. In terms of cost, stability and efficiency (20-22% for a typical solar cell on the market), they are well ahead of the competition.

However, after decades of research and investment, silicon-based solar cells are now close to their maximum theoretical efficiency. As a result, new concepts are required to achieve a long-term reduction in solar electricity prices and allow photovoltaic technology to become a more widely adopted way of generating power.

One solution is to place two different types of solar cells on top of each other to maximize the conversion of light rays into electrical power. These "double-junction" cells are being widely researched in the scientific community, but are expensive to make. Now research teams in Neuchâtel – from EPFL's Photovoltaics Laboratory and the CSEM PV-center – have developed an economically competitive solution. They have integrated a perovskite cell directly on top of a standard silicon-based cell, obtaining a record efficiency of 25.2%. Their production method is promising, because it would add only a few extra steps to the current silicon-cell production process, and the cost would be reasonable. Their research has been published in Nature Materials.

Perovskite-on-silicon: a nanometric sandwich

Perovskite's unique properties have prompted a great deal of research into its use in solar cells over the last few years. In the space of nine years, the efficiency of these cells has risen by a factor of six. Perovskite allows high conversion efficiency to be achieved at a potentially limited production cost.

In tandem cells, perovskite complements silicon: it converts blue and green light more efficiently, while silicon is better at converting red and infra-red light. "By combining the two materials, we can maximize the use of the solar spectrum and increase the amount of power generated. The calculations and work we have done show that a 30% efficiency should soon be possible," say the study's main authors Florent Sahli and Jérémie Werner.

However, creating an effective tandem structure by superposing the two materials is no easy task. "Silicon's surface consists of a series of pyramids measuring around 5 microns, which trap light and prevent it from being reflected. However, the surface texture makes it hard to deposit a homogeneous film of perovskite," explains Quentin Jeangros, who co-authored the paper.

When the perovskite is deposited in liquid form, as it usually is, it accumulates in the valleys between the pyramids while leaving the peaks uncovered, leading to short circuits.

A key layer ensuring an optimal microstructure

Scientists at EPFL and CSEM have gotten around that problem by using evaporation methods to form an inorganic base layer that fully covers the pyramids. That layer is porous, enabling it to retain the liquid organic solution that is then added using a thin-film deposition technique called spin-coating. The researchers subsequently heat the substrate to a relatively low temperature of 150°C to crystallize a homogeneous film of perovskite on top of the silicon pyramids.

"Until now, the standard approach for making a perovskite/silicon tandem cell was to level off the pyramids of the silicon cell, which decreased its optical properties and therefore its performance, before depositing the perovskite cell on top of it. It also added steps to the manufacturing process," says Florent Sahli.

Updating existing technologies

The new type of tandem cell is highly efficient and directly compatible with monocrystalline silicon-based technologies, which benefit from long-standing industrial expertise and are already being produced profitably. "We are proposing to use equipment that is already in use, just adding a few specific stages. Manufacturers won't be adopting a whole new solar technology, but simply updating the production lines they are already using for silicon-based cells," explains Christophe Ballif, head of EPFL's Photovoltaics Laboratory and CSEM's PV-Center.

At the moment, research is continuing in order to increase efficiency further and give the perovskite film more long-term stability. Although the team has made a breakthrough, there is still work to be done before their technology can be adopted commercially.

###

Reference: F. Sahli, J. Werner, B. A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, and C. Ballif, "Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency," Nature Materials, 2018. DOI: 10.1038/s41563-018-0115-4

This research has been financed by Nano-Tera.ch's Synergy project, the Swiss Federal Office of Energy (grant SI/501072-01), the Swiss National Science Foundation through the Sinergia Episode project (CRSII5_171000) and the NRP70 Energy Turnaround PV2050 project (407040), and the European Union through the Horizon 2020 innovation and research program (CHEOPS project 653296).

Media Contact

christophe Ballif
[email protected]
41-216-954-336
@EPFL_en

http://www.epfl.ch/index.en.html

Related Journal Article

http://dx.doi.org/10.1038/s41563-018-0115-4

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Immune Cells in the Brain: Crucial Architects of Adolescent Neural Wiring

August 26, 2025
Dihydromyricetin Shields Against Spinal Cord Injury Damage

Dihydromyricetin Shields Against Spinal Cord Injury Damage

August 26, 2025

Key Genes Identified in Nutrient Stress During Virus Infection

August 26, 2025

NYU Abu Dhabi Researchers Identify Unique Survival Strategies Adopted by Fish in the World’s Warmest Waters

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Immune Cells in the Brain: Crucial Architects of Adolescent Neural Wiring

KAIST Unveils AI System Capable of Detecting Manufacturing Defects in Smart Factories Amid Changing Conditions

American Gastroenterological Association and Latica Collaborate to Evaluate Living Guidelines Through Real-World Evidence

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.