• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Reviving the protector: new tactic against medulloblastoma

Bioengineer by Bioengineer
June 11, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have a new tactic with potential for fighting medulloblastoma, the most common and most aggressive form of brain tumor in children.

The results are scheduled for publication in Cancer Cell.

Several emerging anticancer treatments are called "epigenetic therapies," targeting the ways cancer cells shut off genes that could restrain their growth. The new tactic revives a protective gene called BAI1, by interfering with a protein that medulloblastoma cells use to silence BAI1.

Reactivating BAI1, with a compound that penetrates into the brain, blocks medulloblastoma growth in mice. Senior author Erwin Van Meir, PhD, says this compound could be a basis for drug discovery and a valuable tool for attacking other types of cancer as well.

"It was a surprise the molecule we identified was more specific than we thought." Van Meir says. "This opens up a new area in epigenetic therapy."

Van Meir says that the Cancer Cell paper brings together research in his lab over the last 10 years. His team had originally been studying BAI1, because it was silenced in glioblastoma, another malignant brain tumor seen in adults. They had initially noticed that BAI1 is a regulator of angiogenesis, the process by which tumors attract new blood vessels.

"It turns out this is not actually BAI1's most important function," Van Meir says.

BAI1 is also a "protector" of p53, which has a role in preventing many types of cancer by monitoring DNA damage and sensing other types of stress – p53 is sometimes called "guardian of the genome."

Senior research associate Dan Zhu, PhD, the first author of the paper, was able to work out how BAI1 (also known as ADGRB) protects p53: by holding back another protein, Mdm2, which tags p53 for degradation.

In mice, the interactions between BAI1 and other genes linked to brain tumors weren't clear until Van Meir and his colleagues started looking at models of medulloblastoma.

"Once we delved into medulloblastoma, it became very obvious," he says, adding that targeting BAI1 is likely to be effective across the four molecular sub-varieties of medulloblastoma.

The compound that reactivates the BAI1 gene, called KCC-07, was identified in collaboration with the lab of Bill Nelson at Johns Hopkins. It interferes with MBD2, a protein that binds methylated DNA. Methylation is generally a modification that shuts genes off, and some epigenetic therapies aim to inhibit methylation, such as azacytidine/Vidaza, used against myelodysplastic syndrome. However, inhibiting the process of methylation turns many genes on or off – targeting just one DNA-binding protein could be more specific, Van Meir says.

KCC-07 could inhibit medulloblastoma growth in cell culture and in mouse models, and "represents a promising chemical scaffold for further drug development," the researchers conclude.

###

The research was supported by the National Cancer Institute (CA086335, CA163722, CA138292), the National Institute of Neurological Disorders and Stroke (NS096236, NS055077), the CURE Childhood Cancer Foundation, the Southeastern Brain Tumor Foundation, St. Baldrick's Foundation and the Emory Pediatric Research Center.

Media Contact

Catherine Williams
[email protected]
404-778-5848
@emoryhealthsci

http://whsc.emory.edu/home/news/index.html

http://dx.doi.org/10.1016/j.ccell.2018.05.006

Share12Tweet8Share2ShareShareShare2

Related Posts

Personalized Guide to Understanding and Reducing Chemicals

February 7, 2026

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.