• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Electrons take one step forward without two steps back

Bioengineer by Bioengineer
June 8, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Valentine Vullev

RIVERSIDE, Calif. — Researchers at the University of California, Riverside, have, for the first time, successfully used electric dipoles to completely suppress electron transfer in one direction while accelerating in the other. The discovery could aid development of improved solar cells and other energy-conversion devices and hasten the design of new and superb energy and electronic materials.

It is not a stretch to say that life depends on strictly regulated electron transfer.

Electron transfer is among the most fundamental processes for sustaining life and for energy conversion. It occurs when an electron moves from one atom or molecule to another, bringing its electrical energy with it. Photosynthesis, mitochondrial and cellular respiration, and nitrogen fixation are among the many biological processes made possible by the orderly movement of electrons.

Because electron transfer is both ubiquitous and important, scientists have invested enormous efforts into understanding the process, and used what they learned to create solar cells, fuel cells, batteries and many other devices that also depend on efficient electron transfer.

But the delicate electron ballet in living things choreographed through eons of evolution is more like stage diving into a mosh pit when applied to human-created technologies.

Scientists can control electron transfer to some extent, but have difficulty herding all the subatomic particles into a single direction. When they direct electrons forward, inevitably, some move backward as well, causing a loss of energy.

Valentine Vullev, a professor of bioengineering in the Bourns College of Engineering, led an international team of researchers from UC Riverside, Poland, the Czech Republic, and Japan that used molecular dipoles to harness electron transfer. Molecular dipoles occur when one of the atoms in a molecule has a composition that is more likely to attract electrons, which have a negative electrical charge. Molecular dipoles are everywhere and have powerful, nanoscale electrical fields that can guide desired electron transfer processes and suppress undesired ones.

While electric dipoles generate enormous fields around them the strength of the electric fields decreases fast with distance. Therefore, it is essential to place the dipole as close as possible to the electron transfer molecules.

Vullev's group incorporated the dipole within the electron donor molecule, 5-N-amido-anthranilamide electret, a substance with a semi-permanent electric charge and dipole polarization, similar to a magnet. The researchers exposed the electret to different solvents to trigger electron transfer. With low-polarity solvents they considerably enhanced the effect of the dipoles and guided all the electrons in just one direction.

This is the first time that scientists have shown that the dipole accelerates electron transfer in one direction and completely suppresses it in the other.

"This discovery opens doors for guiding forward electron transfer processes, while suppressing undesired backward electron transduction, which is one of the holy grails of photophysics and energy science," Vullev said.

The key lay in striking a fine balance between lowering the solvent's polarity to enhance the dipole effect without killing electron transfer all together. Custom-designed molecular components with the right electronic properties helped optimize this balance.

"While it appears that we are solving an important physical chemistry and physics problem, the findings from our work can have broad interdisciplinary impacts, and prove important for pertinent fields, such as molecular biology, cell physiology, and energy science and engineering," said Vullev. "A better understanding of electron transfer at the molecular level will improve our understanding of living systems and serve as a foundation for efficient energy technologies."

###

The report on this advance received the highest ranking by journal reviewers and was selected by the editorial team of Angewandte Chemie to be published as a "Hot Paper" in an upcoming issue.

The paper is available online as: "Dipole Effects on Electron Transfer are Enormous," Maciej Krzeszewski, Eli M. Espinoza, Ctirad ?ervinka, James B. Derr, John A. Clark, Dan Borchardt, Gregory J. O. Beran, Daniel T. Gryko, Valentine I Vullev. https://doi.org/10.1002/anie.201802637

Media Contact

Holly Ober
[email protected]
951-827-5893
@UCRiverside

http://www.ucr.edu

Original Source

https://doi.org/10.1002/anie.201802637 http://dx.doi.org/10.1002/anie.201802637

Share14Tweet8Share2ShareShareShare2

Related Posts

blank

No Heritability Found in Extra-Pair Mating Behavior

September 16, 2025
blank

How Placental Research Could Revolutionize Our Understanding of Autism and Human Brain Evolution

September 16, 2025

Pueraria lobata and Puerarin Boost Dopamine Activity

September 16, 2025

Breakthroughs in Dynamic Biomacromolecular Modifications and Chemical Interventions: Insights from a Leading Chinese Chemical Biology Consortium

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced Rib Fracture Detection via Post-Mortem Photon CT

Updated VasCog-2-WSO Criteria Enhance Diagnosis of Vascular Cognitive Impairment and Dementia

Using Cell-Free DNA, miRNA to Estimate Postmortem Interval

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.