• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Visual worlds in mirror and glass

Bioengineer by Bioengineer
June 8, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: COPYRIGHT (C) TOYOHASHI UNIVERSITY OF TECHNOLOGY. ALL RIGHTS RESERVED.

The beautifully bright and clear colorful rays of light offered by precious metals and jewels give us a rich sense of that object's physical quality. This is due to our ability to perceive materials, which provides an estimate of the surface condition and material of objects. Humans tend to attribute value to the phenomenon of light reflecting from or passing through the surface of an object in a complex manner. In fact, humans as a species have sought good material properties since the dawn of time. Based on this knowledge, researchers in various fields of study including neuroscience, psychology and engineering have strived to uncover the processes related to material perception that occur in our brain.

Reflective materials are materials such as mirrors and polished metals that have a surface on which light is specularly reflected. Transparent materials are materials such as glass and ice through which light permeates and refracts. The images that appear on the surfaces of these materials greatly vary in complex ways depending on what surrounds them. Because these objects can produce a countless number of images, the way in which humans distinguish between mirror and glass was unknown.

In everyday life, a viewed object and the viewer, namely, a human are hardly ever stationary at the same time. As such, it was believed that the information on visual perception sent to the brain when an object is viewed also included latent dynamic information. For instance, when a mirror (reflective material) rotates, humans are only able to perceive dynamic information on the front side of the object. However, when glass (transparent material) rotates, humans can perceive dynamic information at both the front and rear (opposite information) of the object because the object is transparent (FIG. 1A, moving picture 1).

The research team came to the hypothesis that humans discriminate between reflective/transparent materials by using dynamic information from those materials as a cue among a vast possible selection of information. The team empirically measured the degree to which people perceive and discriminate between moving objects made of reflective and transparent materials, and used that data to develop and test a model for discriminating between reflective/transparent materials (FIG. 1B). This model correlates closely with human perception and suggests that material perception in humans can be accurately predicted.

Lead author and PhD student Hideki Tamura explains: "Because humans can distinguish between the various materials that are around them such as metal, glass and wood with very high accuracy, we initially thought that the brain carries out complex information processing to achieve this task. However, our brains may actually only perform simple information processing using cues that summarize the information we need. This discovery is expected to be applied to material property reproduction technology based on the mechanism of our brains."

Research team leader Professor Shigeki Nakauchi states: "We come across mirrors and glass all the time in our daily lives, but they are actually very peculiar materials in terms of material perception because they do not possess any color and merely distort whatever is around them. We are able to perceive and enjoy mirror-like and glass-like properties and the other various materials in our world by way of dynamic information, which initially seemed unrelated to this perception."

This research suggests that humans use efficient cues when discriminating between materials. More specifically, humans can apply these cues to estimate or express the material state of an object using summarized information without needing to use all the information in, for example, a moving picture. The results of this research are therefore expected to be used in material property measurement systems and material reproduction technology that take insight from the mechanism of visual perception.

###

This study was supported by JSPS KAKENHI, grant numbers JP15H05922 and JP16J00273

Reference

Tamura, H., Higashi, H., Nakauchi, S. (2018). Dynamic Visual Cues for Differentiating Mirror and Glass. Scientific Reports, 8, 8403. DOI:10.1038/s41598-018-26720-x (2018?5?30???)

Media Contact

Yuko Ito
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41598-018-26720-x

Share13Tweet7Share2ShareShareShare1

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.