• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Normal eye dominance is not necessary for restoring visual acuity in amblyopia

Bioengineer by Bioengineer
June 7, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Louisville

LOUISVILLE, Ky. – Amblyopia, commonly known as "lazy eye," is a visual disorder common in children. The symptoms often are low acuity in the affected or "lazy" eye and impaired depth perception. Researchers have long believed that the impaired vision by one eye is a consequence of exaggerated eye dominance that favors the fellow or "good" eye.

Amblyopia typically is treated by patching the fellow eye to strengthen the affected eye with the goal of restoring normal eye dominance. If correction is not achieved prior to the closing of a "critical period" that ends in early adolescence, visual impairments are more difficult to treat, if not permanent.

Research published today, led by Aaron W. McGee, Ph.D., assistant professor in the University of Louisville Department of Anatomical Sciences and Neurobiology, may lead to changes in how amblyopia is treated, particularly in adults. The research shows that eye dominance and visual acuity are controlled by different areas of the brain, and that one can be corrected without correcting the other.

"We unexpectedly discovered that they aren't related. They're independent," McGee said. "It may not be necessary to instill normal eye dominance to correct visual acuity."

Previously, McGee and fellow researchers identified a gene called ngr1 as essential in closing the critical period. He found that deleting ngr1 in animal models permits the critical period to remain open or to re-open, facilitating recovery of normal eye dominance and visual acuity. However, the relationship between the improved visual acuity and eye dominance was not clear.

Today's research reports that recovery of eye dominance alone is not sufficient to promote recovery of acuity, and recovery of acuity can occur even if eye dominance remains impaired. McGee and his colleagues found that eye dominance is regulated by the brain's primary visual cortex, while visual acuity is governed by another area of the brain, the thalamus.

McGee is the senior author on the article, published in Current Biology, (Distinct Circuits for Recovery of Eye Dominance and Acuity in Murine Amblyopia). Co-authors include Céleste-Élise Stephany Ph.D., a graduate student at the University of Southern California at the time of the research and now a postdoctoral fellow at Harvard Medical School, Shenfeng Qiu, Ph.D., assistant professor of the University of Arizona, and others.

The researchers applied tools to selectively delete the ngr1 gene in different areas of the brain. When ngr1 was deleted from the primary visual cortex, normal eye dominance was recovered but acuity remained impaired. When ngr1 was deleted from the thalamus, eye dominance was impaired, but visual acuity recovered to normal.

"Genes that are limiting recovery from amblyopia are working in parts of brain circuitry that previously were not recognized to have a role in improving visual acuity," McGee said. "This could allow researchers to address acuity directly, without having to restore normal eye dominance."

###

Media Contact

Betty Coffman
[email protected]
502-852-4573

http://www.louisville.edu

Original Source

http://uoflnews.com/releases/normal-eye-dominance-is-not-necessary-for-restoring-visual-acuity-in-amblyopia/ http://dx.doi.org/10.1016/j.cub.2018.04.055

Share12Tweet7Share2ShareShareShare1

Related Posts

Skin Protein Harnesses Physical Tension to Regulate Tissue Growth

September 5, 2025

Nursing Perspectives on Outdoor Walks in Dementia Care

September 5, 2025

JAMA Network Introduces JAMA+ Women’s Health Platform

September 5, 2025

Butyric and Valeric Acids Combat Stress-Induced Depression

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthrough Discoveries from MD Anderson: Research Highlights – September 5, 2025

Skin Protein Harnesses Physical Tension to Regulate Tissue Growth

Targeting One Key Factor Could Disrupt Brain Tumors in Two Crucial Ways

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.