• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A common electronic language for magnetic resonance

Bioengineer by Bioengineer
June 6, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists working in the field of organic chemistry are always looking for new molecules that are created and studied using magnetic resonance. The standards used to re-transcribed the collected data is however specific to each laboratory or publication, making it difficult to export the information electronically and thus to be used by the scientific community. An international team headed by chemists from the University of Geneva (UNIGE) has developed a new common electronic language around two main features: it translates the data of each molecule in exactly the same way and makes it simple to export it from one information system to another. This means that chemists everywhere can access the data easily, which is also directly reusable – resulting in significant time-savings for future research. This study, published in the journal Magnetic Resonance in Chemistry (Wiley), paves the way for creating an international, open-access database and specific tools, including artificial intelligence analysis.

Organic chemists create new molecules based on carbon atoms; these are so small, however, that it is impossible to see what they synthesise. Researchers use magnetic resonance to verify these compositions that are made "blind": every atom that makes up the molecule emits a signal, whose frequency is translated in the form of a spectrum that the chemists can then decode. To determine the structure of a molecule, he must be able to "read" the magnetic resonance spectra.

Magnetic resonance gets up to speed

Chemists have a specific vocabulary for describing spectra and detailing the resonance of the atoms. But the way the raw data is translated into a written language varies depending on the individual laboratory, the software used and the particular publication. In short, there is no database available for assigned molecular structures or any uniformity in the way the spectra are processed and the data attributed to them. "That's why it is very difficult to re-use data generated by other laboratories," explains Damien Jeannerat, a researcher in the Department of Organic Chemistry in UNIGE's Faculty of Science. "So, we came up with the idea of devising a single electronic language that can be used to switch from one system to another without losing any precision, and to build an international, open-access database."

NMReDATA: the one and only language

The UNIGE chemists teamed up with specialists of the field and introduced a new electronic language that can serve as the standard for processing organic molecule data. "Our new format, called NMReDATA, operates according to a system of labels that are assigned to each item of data extracted from the spectra in a defined order – and which can be easily read by a computer," says Marion Pupier, a chemical engineer in the Department of Organic Chemistry at UNIGE. The frequency of each atom will be described in a sequence showing the chemical shift, the number of atoms, the couplings, the interatomic correlations and finally the assignments. "Until now, everyone has used his own sequence to transmit the same information, making electronic transfer from one computer to another impossible and forcing the researchers to monitor and constantly reorganise the information. But there will be no need to do this with our system, thanks to the uniform nature of the language", continues Damien Jeannerat.

Creating an international, open-access database

The idea of a common electronic language is closely linked to the desire to create open-access databases. "This would enable chemists to find the exact composition of the molecules they're studying without having to re-do the work that has already been done in the past," says Marion Pupier. The information will be visible and available anywhere and at any time, saving considerable time and money for organic chemistry research.

All that now remains is to disseminate the new format and to establish it as the norm for publishing articles in the major international journals. "We hope that all the software will be fully operational in around a year, and that NMReDATA will be used by everyone,ยป says Jeannerat by way of conclusion.

###

Media Contact

Damien Jeannerat
[email protected]
41-223-796-084
@UNIGEnews

http://www.unige.ch

http://dx.doi.org/10.1002/mrc.4737

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matterโ€“Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matterโ€“Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org ยฉ Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org ยฉ Copyright 2023 All Rights Reserved.