• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Increased electrical activity in eye may relieve short-term dry eye pain

Bioengineer by Bioengineer
June 6, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rockville, Md. (June 6, 2018)– A boost of electrical activity in the eye's mucous membranes may lead to new treatments for the painful condition known as dry eye. The study, published ahead of print in the American Journal of Physiology–Cell Physiology, was chosen as an APSselect article for June.

Dry eye is a common condition often caused by a disruption in the eye's fluid balance. A long-term imbalance of too much salt and not enough water (hyperosmolarity) in the thick layer of fluid in the eye (tear film) can lead to inflammation and cell damage that may become irreversible.

Extremely fast electrical signals carry messages throughout the body, telling it how to function. This process plays a role in how the body responds to various stimuli. In this case, little is known about how the eye's surface adapts to the fluid imbalance seen in dry eye. Donald G. Puro, MD, PhD, from the University of Michigan, studied the bioelectrical responses of cells in the mucous membranes that line the eyelids (goblet cells). Goblet cells release a protein called mucin–the basis of mucous–which slows down the evaporation of tears and helps maintain the tear film's balance. In a rat model of dry eye, Puro found that electrical activity in the goblet cells increases as hyperosmolarity rises in the tear film, which in turn allows the cells to produce more mucin. However, this voltage boost is short-lived. If the salt-to-water ratio of the tear film remains unbalanced in the long-term, the goblet cells' electrical activity returns to normal levels without producing additional mucin.

"Continued progress in elucidating the bioelectric mechanisms by which the ocular surface responds to dryness [and] hyperosmolarity should provide novel strategies for [improving] the uncomfortable sight-impairing condition of dry eye," Puro wrote.

###

Read the full article, "Role of ion channels in the functional response of conjunctival goblet cells to dry eye," published ahead of print in the American Journal of Physiology–Cell Physiology. It is highlighted as one of this month's "best of the best" as part of the American Physiological Society's APSselect program. Read all of this month's selected research articles.

NOTE TO JOURNALISTS: To schedule an interview with a member of the research team, please contact the [email protected]>APS Communications Office or 301-634-7209. Find more research highlights in the APS Press Room.

Physiology is the study of how molecules, cells, tissues and organs function in health and disease. Established in 1887, the American Physiological Society (APS) was the first U.S. society in the biomedical sciences field. The Society represents more than 10,500 members and publishes 15 peer-reviewed journals with a worldwide readership.

Media Contact

Stacy Brooks
[email protected]
301-634-7209
@APSPhysiology

http://www.the-aps.org

http://dx.doi.org/10.1152/ajpcell.00077.2018

Share12Tweet7Share2ShareShareShare1

Related Posts

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.