• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Flexible solar cells: Will they someday power your devices?

Bioengineer by Bioengineer
June 6, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Will you ever be able to charge your mobile device, car and even clothing with flexible solar cells? Researchers at Aalto University in Finland and Université de Montréal are studying whether the now-experimental technology could someday be mass-produced and commercialized, and some of the issues that have to be resolved, including the environmental impact.

For the electronic cells to be viable on an industrial scale, they would have to be made through roll-to-roll processing – that is, be churned out on rolls of flexible plastic or metal foil, the researchers say. Ink-jet printing would allow precise insertion of the dye and electrolyte components.

The problem of encapsulation

The encapsulation of a flexible cell also poses a major challenge. If encapsulation is insufficient, liquid electrolyte could leak out of the cell or impurities could seep in, considerably reducing the lifetime of the device.

'Flexible solar cells are usually made on metals or plastics, and both come with perils: a metal may corrode, and plastics may allow water and other impurities to permeate," said Dr. Kati Miettunen, a project manager at Aalto's Department of Bioproducts and Biosystems.

New innovations will also be needed to join the substrates together, since conventional techniques such as glass-frit bonding now used in flat-panel displays and other devices, are unsuitable for flexible cells.

The lifetime of devices as an issue

"Another prerequisite for commercialization is making the lifetime of devices adequate in relation to the energy that is embedded in the fabrication of the decices, so that the solar cells won't degrade before they have produced more energy than was used for making them," adds Jaana Vapaavuori, the new assistant professor of the chemistry department of Université de Montréal.

New discoveries using biomaterials, or a hybrid material with wood pulp as substrates for the cells, could pave the way forward, said Miettunen, who is working with UdeM's department of chemistry in her research. These materials' natural ability to filter out impurities would work well for solar cells.

###

About this study

"Mass-Production of Flexible Solar Cells: Challenges in Durability and Environmental Impact", Wiley Advanced Science News, June 3, 2018.

Complete study: Miettunen K, Vapaavuori J, Poskela A, Tiihonen A, Lund PD. " Recent progress in flexible dye solar cells ". WIREs Energy and Environment, May 22,2018. doi.org/10.1002/wene.302

This study was funded by Banting Postdoctoral Fellowship, Tiina and Antti Herlin Foundation and Koneen Säätiö.

Media Contact

Julie Gazaille
[email protected]
514-343-6796
@uMontreal_news

http://bit.ly/mNqklw

http://dx.doi.org/10.1002/wene.302

Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.