• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Antifungal drug eliminates sleeping bowel cancer cells in mice

Bioengineer by Bioengineer
May 31, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An antifungal medication, commonly prescribed for toenail infections, could help eliminate dormant cells within bowel tumours, according to new research funded by Cancer Research UK and published in the Journal of Experimental Medicine today (Thursday).

Researchers at the Cancer Research UK Cambridge Institute have shown in laboratory studies in mice, that itraconazole effectively halts the growth and progression of certain types of bowel cancer. The next step will be to see if this holds true in patients with the disease.

Dr Simon Buczacki, co-lead author and Cancer Research UK clinician scientist, said: "One of the biggest challenges in treating any cancer is the diversity of different cells within the same tumour. We've targeted a type of cell that lies asleep within bowel tumours, remaining unresponsive to treatment and putting the patient at risk of their cancer coming back."

The Cambridge team characterised the molecular nature of dormant bowel cancer cells. These 'sleeping' cells are resistant to drugs, including chemotherapy, which work by targeting cells that are actively growing. So even if it looks like a treatment has worked, some of these dormant cells can later awaken after treatment has finished and lead to the tumour re-growing.

The scientists identified two key pathways* involved in cell dormancy and used miniature bowel tumours grown from the cells of mice with cancer, to test different drugs targeting these pathways.

They found, for the first time, that itraconazole blocked signals from a pathway called Wnt, which is implicated in the growth and spread of many different cancers. This led to the tumours collapsing in the mice – dormant cells disappeared and the tumour stopped growing.

"What's interesting is that this drug seems to kick both dormant and non-dormant cells into action," added Dr Simon Buczacki. "It forces cells back into a short cycle of growth before slamming on an irreversible 'stop' button, entering a permanent standstill that's known as senescence."

The next stage will be to test this drug in people. The researchers hope to set up a clinical trial where they can test its effect on patients with hard to treat advanced bowel cancer. They also intend to investigate whether this drug could be more effective in combination with other treatments like chemotherapy.

Professor Greg Hannon, director of the Cancer Research UK Cambridge Institute, said: "This innovative study has taken a step toward addressing one of the biggest challenges in cancer research. Tumours are made up of many different types of cancer cells, which can evolve separately and respond to treatments differently.

"The presence of drug-resistant, dormant tumour cells is a problem in many types of cancer. If we find ways to target these cells in bowel cancer, it might provide insights into tackling the problem of dormant tumour cells more broadly."

###

For media enquiries contact Kathryn Ingham in the Cancer Research UK press office on 020 3469 5475 or, out of hours, on 07050 264 059.

Notes to editor:

Buczacki, S, JA., et al. Itraconazole targets cell-cycle heterogeneity in colorectal cancer. Journal of Experimental Medicine.

*The Wnt and hedgehog (hh) pathways were found to be involved in cell dormancy.

Around 41,300 people are diagnosed with bowel cancer in the UK each year. It is the 4th most common cancer in the UK.

About Cancer Research UK

  • Cancer Research UK is the world's leading cancer charity dedicated to saving lives through research.
  • Cancer Research UK's pioneering work into the prevention, diagnosis and treatment of cancer has helped save millions of lives.
  • Cancer Research UK receives no funding from the UK government for its life-saving research. Every step it makes towards beating cancer relies on vital donations from the public.
  • Cancer Research UK has been at the heart of the progress that has already seen survival in the UK double in the last 40 years.
  • Today, 2 in 4 people survive their cancer for at least 10 years. Cancer Research UK's ambition is to accelerate progress so that by 2034, 3 in 4 people will survive their cancer for at least 10 years.
  • Cancer Research UK supports research into all aspects of cancer through the work of over 4,000 scientists, doctors and nurses.
  • Together with its partners and supporters, Cancer Research UK's vision is to bring forward the day when all cancers are cured.

For further information about Cancer Research UK's work or to find out how to support the charity, please call 0300 123 1022 or visit http://www.cancerresearchuk.org. Follow us on Twitter and Facebook.

Media Contact

Kathryn Ingham
[email protected]
020-346-95475
@CR_UK

http://www.cancerresearchuk.org

Share12Tweet7Share2ShareShareShare1

Related Posts

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.