• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Lone water molecules turn out to be directors of supramolecular chemistry

Bioengineer by Bioengineer
May 30, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Bart van Overbeeke

Scientists in supramolecular chemistry often run into surprising outcomes. A broken seal of a lab cuvette led an American researcher at the Eindhoven University of Technology to the origin of these inexplicable results: the weather. Or the humidity, to be more precise, because this determines the water concentration in oils used as solvents, which was previously thought to be negligible. Research now shows that the lone water molecules in oil aren't just spectators, they firmly direct supramolecular processes. This outcome means that a lot of previous research has to be re-examined, but also that chemists get a new, cheap and powerful tool. The results are published in Nature.

In September 2016 postdoctoral researcher Nathan van Zee spent a week with his parents in Florida. But his thoughts often led him back to his lab in The Netherlands because he had been struggling for quite some time with erratic outcomes he didn't understand. The molecular helices that he was synthesizing sometimes had a clockwise structure and sometimes an anti-clockwise structure. This is an important difference–for instance, it can make the difference between a drug that works and a drug that doesn't. Van Zee had already tried all sorts of things, but was not getting any closer to answers.

After his flight back from the US he immediately went to his laboratory to start a new experiment, after which he wanted to take a nap. But his jetlag caused him to use the wrong settings for the instrument, and he overslept. His eureka moment, which would eventually lead to a Nature publication, came the next day. Back in the lab he saw strange results. But he also saw that the seal of his lab cuvette was broken, and the ultradry air of the enclosing sample holder had gotten into it. This gave him an important clue: his sample had become drier, suggesting the water content of the solvent oil is a driving force.

Van Zee and his supervisor professor Bert Meijer immediately knew they were on to something important, and they decided to get to the bottom of it. They discovered that it was indeed the water concentration in the sample that made the difference, even though it was only a few ppm (parts per million). Even with extremely small fluctuations in water concentration, they observed that the helix rotation changes from clockwise to anti-clockwise.

This result caused the researchers to have a closer look at some of their previous work that had inexplicable results. It turned out that also in these tests the water concentration determined the outcome. The previously inexplicable changes in the results were caused by fluctuations in the water content of the oil-based solvent. Because that content fluctuates with the humidity. And the atmospheric humidity–indoors and outdoors–is constantly changing because of the weather. The consequence is that a test run on day A can have totally different results from exactly the same test run on day B.

Van Zee and his colleagues also revealed how the minute water concentration can have such a big impact. Water molecules are polar: one side is negatively charged and the other positively. That's why they like to bond, via so-called hydrogen bonds. But oil is hydrophobic: it repels water. This repulsion leaves too little space for the water molecules in oil to bond with other water molecules; they are isolated. That means their potential energy to form new hydrogen bonds is available for other uses. The Eindhoven researchers have shown that this energy of water plays a crucial role in the formation of supramolecular structures. These are molecular aggregates based on reversible bonds, for example hydrogen bonds.

Their findings put quite a burden on their own science field as well as adjacent ones. A lot of chemistry is done in oil, so a lot of previous research will have to be re-evaluated to assess the effect of water. The researchers suspect that many previous reports of unexplained phenomena, be it changes in structure, size or processing, are fundamentally due to interactions with water.

On the other hand the Eindhoven research team provides chemists worldwide with an amazing new instrument, Van Zee explains. "The water concentration turns out to have a very strong influence. And one can easily control it, by manipulating the humidity, which is pretty simple in a closed environment. We think there will be a lot of follow-up research also in other fields of chemistry."

###

Media Contact

Bert Meijer
[email protected]
@TUEindhoven

http://www.tue.nl/en

Related Journal Article

http://dx.doi.org/10.1038/s41586-018-0169-0

Share13Tweet8Share2ShareShareShare2

Related Posts

Mitochondrial Genome Insights in Lycoperdaceae Fungi

August 30, 2025

Studying Nesting Habits of Hungary’s European Pond Turtle

August 30, 2025

Fine Mapping MS-Associated SNPs in Sardinian Trios

August 30, 2025

Impact of Environment on Hornbill Behavior in Zoos

August 30, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microalgae: A Sustainable Solution for Wastewater and Biodiesel

Optimizing Networked Robots with Dynamic Formation Control

Cancer Treatment’s Impact on Breast Cancer Survivors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.