• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Body knows best: A natural healing mechanism for inflammatory bowel disease

Bioengineer by Bioengineer
May 30, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Weizmann Institute of Science

Treating inflammatory diseases of the bowel is extremely challenging: Genes, gut microbes and disrupted immune function all contribute. Weizmann Institute of Science researchers are proposing a way around this complexity. In a study in mice, published in Cell Reports, they have found a way to trigger a natural defense mechanism that prompts the body itself to alleviate intestinal inflammation.

The study, led by veterinarian Dr. Noa Stettner, who is also a PhD student in the lab of Dr. Ayelet Erez in the Biological Regulation Department, focused on nitric oxide (NO), a signaling molecule involved in a variety of biological processes. Scientists have long tried to determine what role NO plays in such inflammatory conditions as Crohn's disease and ulcerative colitis, but NO alleviated intestinal inflammation in some circumstances and promoted it in others.

The Weizmann researchers hypothesized that the paradoxical findings might arise because NO has different effects in different types of cell in the gut. They genetically engineered mice to block NO production exclusively in certain types of cells: either in the cells making up the inner lining of the gut or in immune cells. They found that the symptoms of a colitis-like disease got worse when NO synthesis was blocked in the gut cells; but they improved when NO was blocked in immune cells, particularly in large cells called macrophages.

The scientists concluded if inflammatory bowel diseases are treated by raising NO levels, it may cause side effects in cells outside the gut lining. Stettner, with the help of collaborators at the Weizmann Institute and elsewhere, set out to develop a method for boosting NO production only in the gut lining cells.

They relied on Erez's earlier finding that an enzyme called ASL that is responsible for the making of the amino acid arginine, the raw material from which the body manufactures NO. The researchers turned to two natural substances: fisetin, which is present in apples, persimmons and strawberries elevated ASL levels, and citrulline, found in watermelon, beets, and spinach increased ASL activity.

The two supplements, when given together, promoted the manufacture of NO exclusively in cells of the inner lining of the gut. Most important, in mice, the symptoms of an inflammatory disease in the gut improved significantly.

The treatment also had a beneficial effect on colon cancer, which is known to be aggravated by gut inflammation. In mice with tumors of the colon, intestinal inflammation subsided and their tumors decreased in number and size after receiving the supplements.

If this approach is shown to raise NO levels in the inner lining cells in humans, it may help treat inflammatory bowel diseases ? and potentially even colon cancer. The fact that it makes use of over-the-counter nutritional supplements should facilitate its implementation.

###

Contributors to this research included: Julia Frug, Dr. Alon Silberman, Dr. Alona Sarver and Dr. Narin N. Carmel-Neiderman of the Biological Regulation Department; Dr. Chava Rosen, Dr. Biana Bernshtein, Dr. Shiri Gur- Cohen, Dr. Meirav Pevsner-Fischer, Dr. Niv Zmora and Prof. Steffen Jung of the Immunology Department; Dr. Raya Eilam, Dr. Inbal Biton and Prof. Alon Harmelin of the Veterinary Resources Department; Dr. Alexander Brandis of the Life Sciences Core Facilities Department; Dr. Keren Bahar Halpern of the Molecular Cell Biology Department; Dr. Ram Mazkereth of Tel Aviv University; Dr. Diego di Bernardo and Dr. Nicola Brunetti-Pierri of Federico II University in Naples, Italy; Dr. Gillian Dank of the Hebrew University of Jerusalem; and Dr. Murali Premkumar and Dr. Sandesh CS. Nagamani of Baylor College of Medicine in Houston, Texas.

Dr. Ayelet Erez's research is supported by the Adelis Foundation; the Rising Tide Foundation; the Comisaroff Family Trust; the Irving B. Harris Fund for New Directions in Brain Research; and the European Research Council. Dr. Erez is the incumbent of the Leah Omenn Career Development Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Media Contact

Yael Edelman
[email protected]
972-893-43852
@WeizmannScience

http://www.weizmann.ac.il

Original Source

https://wis-wander.weizmann.ac.il/life-sciences/body-knows-best-natural-healing-mechanism-inflammatory-bowel-disease

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Xanthan Gum Production with Essential Oil By-products

Groundwater Pesticide Contamination: Challenges and Solutions

FBXW11 Ubiquitinates YB1, Suppressing Hepatocarcinoma Growth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.