• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Wars and clan structure may explain a strange biological event 7,000 years ago

Bioengineer by Bioengineer
May 29, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Starting about 7,000 years ago, something weird seems to have happened to men: Over the next two millennia, recent studies suggest, their genetic diversity -specifically, the diversity of their Y chromosomes – collapsed. So extreme was that collapse that it was as if there was only one man left to mate for every 17 women.

Anthropologists and biologists were perplexed, but Stanford researchers now believe they've found a simple – if revealing – explanation. The collapse, they argue, was the result of generations of war between patrilineal clans, whose membership is determined by male ancestors.

The outlines of that idea came to Tian Chen Zeng, a Stanford undergraduate in sociology, after spending hours reading blog posts that speculated – unconvincingly, Zeng thought – on the origins of the "Neolithic Y-chromosome bottleneck," as the event is known. He soon shared his ideas with his high school classmate Alan Aw, also a Stanford undergraduate in mathematical and computational science.

"He was really waxing lyrical about it," Aw said, so the pair took their idea to Marcus Feldman, a professor of biology in Stanford's School of Humanities and Sciences. Zeng, Aw and Feldman published their results May 25 in Nature Communications.

A cultural culprit

It's not unprecedented for human genetic diversity to take a nosedive once in a while, but the Y-chromosome bottleneck, which was inferred from genetic patterns in modern humans, was an odd one. First, it was observed only in men – more precisely, it was detected only through genes on the Y chromosome, which fathers pass to their sons. Second, the bottleneck is much more recent than other biologically similar events, hinting that its origins might have something to do with changing social structures.

Certainly, the researchers point out, social structures were changing. After the onset of farming and herding around 12,000 years ago, societies grew increasingly organized around extended kinship groups, many of them patrilineal clans – a cultural fact with potentially significant biological consequences. The key is how clan members are related to each other. While women may have married into a clan, men in such clans are all related through male ancestors and therefore tend to have the same Y chromosomes. From the point of view of those chromosomes at least, it's almost as if everyone in a clan has the same father.

That only applies within one clan, however, and there could still be considerable variation between clans. To explain why even between-clan variation might have declined during the bottleneck, the researchers hypothesized that wars, if they repeatedly wiped out entire clans over time, would also wipe out a good many male lineages and their unique Y chromosomes in the process.

Computing clans

To test their ideas, the researchers turned to mathematical models and computer simulations in which men fought – and died – for the resources their clans needed to survive. As the team expected, wars between patrilineal clans drastically reduced Y chromosome diversity over time, while conflict between non-patrilineal clans – groups where both men and women could move between clans – did not.

Zeng, Aw and Feldman's model also accounted for the observation that among the male lineages that survived the Y-chromosome bottleneck, a few lineages underwent dramatic expansions, consistent with the patrilineal clan model, but not others.

Now the researchers are looking at applying the framework in other areas – anywhere "historical and geographical patterns of cultural interactions could explain the patterns you see in genetics," said Feldman, who is also the Burnet C. and Mildred Finley Wohlford Professor.

Feldman said the work was a unusual example of undergraduates driving research that was broad both in terms of the academic disciplines spanned – in this case, sociology, mathematics and biology – and in terms of its potential implications for understanding the role of culture in shaping human evolution. And, he said, "Working with these talented guys is a lot of fun."

###

Feldman is co-director of Stanford's Center for Computational, Evolutionary and Human Genomics, and a member of Stanford Bio-X, the Stanford Cancer Institute, the Stanford Neurosciences Institute and the Stanford Woods Institute for the Environment. Aw was a 2016 participant in the Bio-X Undergraduate Summer Research Program.

The research was supported by the Center for Computational, Evolutionary and Human Genomics, the Morrison Institute for Population and Resource Studies and a grant from the National Science Foundation.

Media Contact

Nathan Collins
[email protected]
650-228-4677
@stanford

ZZZ – DO NOT EDIT – News Page

http://dx.doi.org/10.1038/s41467-018-04375-6

Share12Tweet7Share2ShareShareShare1

Related Posts

Gender Variations in Pain Response to Cold Stress

Gender Variations in Pain Response to Cold Stress

October 21, 2025
Uncovering Tumor’s Hidden Networks: A Novel Strategy to Stop Cancer Growth

Uncovering Tumor’s Hidden Networks: A Novel Strategy to Stop Cancer Growth

October 20, 2025

Museum Genomic Research Reveals Pathogens Not Responsible for Franklin’s Bumble Bee Population Decline

October 20, 2025

Study Reveals Physical Activity Boosts Total Daily Energy Expenditure

October 20, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1268 shares
    Share 506 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    302 shares
    Share 121 Tweet 76
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    129 shares
    Share 52 Tweet 32
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    123 shares
    Share 49 Tweet 31

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Measuring Stabbing Force in Intracranial Homicides

Nursing Students’ Clinical Learning Challenges at Wolaita Sodo

Comparing Routes: Subcutaneous vs. Intravenous Pembrolizumab

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.