• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Surrey develops hepatitis C model that could help improve treatment

Bioengineer by Bioengineer
May 29, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The University of Surrey has created a new mathematical model that details how the Hepatitis C (HCV) infection develops and behaves more accurately than previous models. This new model has the potential to improve treatment for the infection that affects 215,000 people in the United Kingdom.

HCV is a virus that infects the liver and, if left untreated, can potentially be life-threatening. The virus is usually spread through blood to blood contact and often doesn't have any noticeable symptoms until the liver is significantly damaged. When symptoms surface – such as tiredness, loss of appetite and vomiting – they are regularly mistaken for other conditions.

In a new paper published by the journal Viruses, Professor of Mathematics Philip Aston proposes a new mathematical model that may give clinicians and drug manufacturers a better understanding of the effect of drug treatment on the virus. The model was developed by taking account of recent biological insights into the dynamics of the infection and incorporating these into the model.

The new model has given rise to three recommendations for changes in the treatment of HCV:

  • If the infection is caught and treated in the early stages, then a lower drug dose may be effective in eliminating the infection.
  • If the concentration of the virus in a patient's blood increases after their treatment ends, then continuing with a low level of drug treatment may keep their infection at a small and manageable level.
  • The drug dose could be reduced as treatment progresses which would reduce the cost of treatment as well as providing a reduction in side effects for the patient.

According to the World Health Organisation, there are an estimated 71 million people in the world that have chronic HCV infection which, if left untreated, may result in cirrhosis of the liver or liver cancer. Around 1.8 million new HCV infections occur each year and almost 400,000 people die each year from the infection.

Philip Aston, Professor of Mathematics at the University of Surrey and author of the paper, said: "We have developed a mathematical model that is better able to predict the dynamics of hepatitis C infection during treatment. We believe that this new model provides an opportunity to improve the treatment for patients who are suffering from this illness."

###

Note to editors

The paper: A New Model for the Dynamics of Hepatitis C Infection: Derivations, Analysis and Implications; Viruses 10(4), 195, April 2018.

Professor Philip Aston is available for interview.

Media Contact

Dalitso Njolinjo
[email protected]
01-483-688-914
@UniOfSurrey

http://www.surrey.ac.uk

Share13Tweet7Share2ShareShareShare1

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Adverse Events in Asian Adults on Brivaracetam

Tumor Microenvironment Dynamics in Breast Cancer Therapy

Extraction Methods Impact Idesia Polycarpa Oil Quality

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.