• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Genes, environment and schizophrenia: new study finds the placenta is the missing link

Bioengineer by Bioengineer
May 28, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Baltimore, MD – May 28, 2018 – Hiding in plain sight, new research shines a spotlight on the placenta's critical role in the nature versus nurture debate and how it confers risk for schizophrenia and likely other neurodevelopmental disorders including ADHD, autism, and Tourette syndrome. This new scientific frontier, with far-reaching implications for maternal and child health, creates the possibility that scientists can more accurately predict who is at risk of mental illness, and develop strategies to prevent or lessen their occurrence by increasing the resiliency and health of the placenta.

The study, "Convergence of placenta biology and genetic risk for schizophrenia," was led by researchers at the Lieber Institute for Brain Development and published in Nature Medicine. "For the first time, we have found an explanation for the connection between early life complications, genetic risk, and their impact on mental illness and it all converges on the placenta," said Daniel R. Weinberger, who led the team of investigators on the study and is CEO of the Lieber Institute for Brain Development (LIBD).

In contrast to prior studies that focused on how genes related to behavioral disorders directly alter prenatal brain development, this novel research found that many genes associated with risk for schizophrenia appear to alter early brain development indirectly, by influencing the health of the placenta. The research showed that these genes are "turned on" in the placenta during complicated pregnancies and signal a placenta under duress.

While the subject of myth and ritual in many cultures, the placenta remains a scientifically neglected human organ, despite its essential role for supplying nutrients and chemicals critical for normal prenatal development. Indeed, the placenta is the only organ removed from a human body that is not routinely sent to the laboratory for examination.

For over a quarter of a century, brain development during pregnancy and shortly after birth has remained central to a hypothesis that schizophrenia is a neurodevelopment disorder. However, the biological mechanisms involved were poorly understood. Previous studies have shown that genetic variants alone increase the odds of developing schizophrenia by only a fraction, while early life complications during pregnancy and labor can increase risk by up to 2-fold. The Lieber Institute investigators studied over 2800 adult individuals, 2038 of whom had schizophrenia, of various ethnic backgrounds from four countries, including the USA, Europe and Asia. All had undergone genetic testing and were surveyed for obstetrical history information.

Researchers found a prominent interaction between genes associated with risk for schizophrenia and a history of a potentially serious pregnancy complication. Individuals having high genetic risk and serious early life complications have at least a fivefold greater likelihood of developing schizophrenia in comparison to individuals with similarly high genetic risk but no history of serious obstetrical complications. This led to a series of analyses of gene expression in multiple placenta tissue samples, including samples of placenta from complicated pregnancies that include preeclampsia and intrauterine growth restriction. The results showed a striking and consistent turning on of the schizophrenia genes in these placentae and the more they were turned on, the more the placenta showed other signs of being under stress, for example, being more inflamed.

A Clue to Higher Male Risk for Schizophrenia

One of the many mysteries of developmental behavioral disorders, including schizophrenia, autism, ADHD, dyslexia, and Tourette Syndrome is why their incidence is 2-4 times greater in males than in females. The Lieber Institute team findings may shed light on this mystery. They found that the schizophrenia genes turned on in the placenta from complicated pregnancies were dramatically more abundant in placentas from male compared with female offspring. The placenta appears to be at least part of the explanation for the sex bias associated with these disorders.

"The surprising results of this study make the placenta the centerpiece of a new realm of biological investigation related to how genes and the environment interact to alter the trajectory of human brain development," said Weinberger.

Further research into this emerging frontier of clinical medicine will advance the understanding of the biological interplay between placental health and neurodevelopment. There is a potential to discover novel approaches to therapeutic treatments and prevention strategies, and ultimately reduce the incidence of neurodevelopmental behavior disorders.

###

About the Lieber Institute for Brain Development

The mission of the Lieber Institute for Brain Development and the Maltz Research Laboratories is to translate the understanding of basic genetic and molecular mechanisms of schizophrenia and related developmental brain disorders into clinical advances that change the lives of affected individuals. LIBD is an independent, not-for-profit 501(c)(3) organization and a Maryland tax-exempt medical research institute affiliated with the Johns Hopkins University School of Medicine.

Media Contact

Lieber Institute for Brain Development
443-287-2912
[email protected]
https://www.libd.org/

http://dx.doi.org/10.1038/s41591-018-0021-y

Share31Tweet8Share2ShareShareShare2

Related Posts

Unraveling Gut Microbiota’s Role in Breast Cancer

September 14, 2025

How SARS-CoV-2 Spike Protein Activates TLR4

September 14, 2025

Interpretable Deep Learning for Anticancer Peptide Prediction

September 13, 2025

Navigating Shadows: Treating Anorexia and C-PTSD

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.