• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Lung-on-a-chip simulates pulmonary fibrosis

Bioengineer by Bioengineer
May 25, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Ruogang Zhao.

BUFFALO, N.Y. — Developing new medicines to treat pulmonary fibrosis, one of the most common and serious forms of lung disease, is not easy.

One reason: it's difficult to mimic how the disease damages and scars lung tissue over time, often forcing scientists to employ a hodgepodge of time-consuming and costly techniques to assess the effectiveness of potential treatments.

Now, new biotechnology reported in the journal Nature Communications could streamline the drug-testing process.

The innovation relies on the same technology used to print electronic chips, photolithography. Only instead of semiconducting materials, researchers placed upon the chip arrays of thin, pliable lab-grown lung tissues — in other words, its lung-on-a-chip technology.

"Obviously it's not an entire lung, but the technology can mimic the damaging effects of lung fibrosis. Ultimately, it could change how we test new drugs, making the process quicker and less expensive," says lead author Ruogang Zhao, PhD, assistant professor in the Department of Biomedical Engineering at the University at Buffalo.

The department is a multidisciplinary unit formed by UB's School of Engineering and Applied Sciences and the Jacobs School of Medicine and Biomedical Sciences at UB.

With limited tools for fibrosis study, scientists have struggled to develop medicine to treat the disease. To date, there are only two drugs — pirfenidone and nintedanib — approved by the U.S. Food and Drug Administrations that help slow its progress.

However, both drugs treat only one type of lung fibrosis: idiopathic pulmonary fibrosis. There are more than 200 types of lung fibrosis, according to the American Lung Association, and fibrosis also can affect other vital organs, such as the heart, liver and kidney.

Furthermore, the existing tools do not simulate the progression of lung fibrosis over time — a drawback that has made the development of medicine challenging and relatively expensive. Zhao's research team, which included past and present students, as well as a University of

Toronto collaborator, created the lung-on-a-chip technology to help address these issues.

Using microlithography, the researchers printed tiny, flexible pillars made of a silicon-based organic polymer. They then placed the tissue, which acts like alveoli (the tiny air sacs in the lungs that allow us to consume oxygen), on top of the pillars.

Researchers induced fibrosis by introducing a protein that causes healthy lung cells to become diseased, leading to the contraction and stiffening of the engineered lung tissue. This mimics the scarring of the lung alveolar tissue in people who suffer from the disease.

The tissue contraction causes the flexible pillars to bend, allowing researchers to calculate the tissue contraction force based on simple mechanical principles.

Researchers tested the system's effectiveness with pirfenidone and nintedanib. While each drug works differently, the system showed the positive results for both, suggesting the lung-on-a-chip technology could be used to test a variety of potential treatments for lung fibrosis.

###

The research was supported by the National Institutes of Health; the UB School of Engineering and Applied Sciences; the Jacobs School of Medicine and Biomedical Sciences at UB; and the Clinical and Translational Science Institute at UB.

Media Contact

Cory Nealon
[email protected]
716-645-4614
@UBNewsSource

http://www.buffalo.edu

Original Source

http://www.buffalo.edu/news/releases/2018/05/038.html http://dx.doi.org/10.1038/s41467-018-04336-z

Share12Tweet7Share2ShareShareShare1

Related Posts

Dopamine D2 Receptors and Heart Cell Death Unveiled

September 12, 2025

Evaluating Rapid Start HIV Treatment Benefits in U.S.

September 12, 2025

Gastroschisis Rates Shift Pre- and Post-COVID

September 12, 2025

East Palestine Train Derailment: Chemical Hazard Insights

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hope for Sahara Killifish’s Rediscovery in Algeria!

Dopamine D2 Receptors and Heart Cell Death Unveiled

Evaluating Rapid Start HIV Treatment Benefits in U.S.

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.