• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

You are what your mother eats

Bioengineer by Bioengineer
May 24, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: OHSU

For years, pregnant mothers have questioned their nutritional habits: "Will eating more cause my baby to be overweight?" Or, "I'm eating for two, so it won't hurt to have an extra serving, right?"

While many factors, such as the age of the mother, overall health and genetics ultimately play a role, the correlation between a mother's nutrition habits and metabolism has been proved to directly impact the growth of her child. And researchers at OHSU in Portland, Oregon, believe they may be one step closer to knowing why.

In a study published online in Nature Communications, the research team, led by Jae W. Lee, Ph.D., has demonstrated that two neurons key to growth and metabolism — GHRH and AgRP — are developmentally interconnected.

Located in the hypothalamus region of the brain, within a grouping of neurons known as the arcuate nucleus, GHRH, or growth hormone-release hormone, neurons orchestrate body growth and maturation. Meanwhile, AgRP, or Agouti-related peptide, neurons stimulate feeding and suppress energy usage.

To understand how these neurons are developed, the research team cataloged various proteins expressed in the arcuate nucleus of mice and analyzed their overall function.

"We found that one specific protein called DLX1 is critical for GHRH neuron development. However, it also suppresses the development of the AgRP neuron," said Lee, a professor of pediatrics in the OHSU School of Medicine and OHSU Doernbecher Children's Hospital. "When DLX1 was removed, the mouse's growth was stunted, yet it appears obese."

Additionally, DLX1 was found to suppress the development of OTP-labeled cells that become AgRP neurons. This would suggest normal growth development, but limited blockage of energy use, resulting in a trim figure.

"For the first time, these findings prove the intimate relationship between GHRH and AgRP neurons in developmental lineage. Further, the development of both neurons can be artificially preset in controlling postnatal growth," Lee said.

The researchers now are working to determine if DLX1 may be controlled by diet. By testing both high-fat and low-protein – or malnourished – diets in mice, Lee hopes to identify how food impacts a baby's genetic makeup in the womb. This could scientifically support the idea that 'you are what your mother eats.'

###

Media Contact

Tracy Brawley
[email protected]
503-494-8231
@ohsunews

http://www.ohsu.edu

Original Source

https://news.ohsu.edu/2018/05/23/you-are-what-your-mother-eats?linkId=52079064 http://dx.doi.org/10.1038/s41467-018-04377-4

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.