• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The vessel not taken: Understanding disproportionate blood flow

Bioengineer by Bioengineer
May 21, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Each time a blood vessel splits into smaller vessels, red blood cells (RBCs) are presented with the same decision: Take the left capillary or the right. While one might think RBCs would divide evenly at every fork in the road, it is known that at some junctures, RBCs seem to prefer one vessel over the other. One new computer model looks to determine why RBCs behave this way, untangling one of the biggest mysteries in our vascular system

A pair of researchers from Rutgers University has demonstrated a new direct numerical simulation in Physics of Fluids, from AIP Publishing, which predicts the flow of RBCs through the body's networks of capillaries. By constructing a network of virtual capillaries, the team found that not only can the flow through so-called mother vessels sometimes become skewed, leading to an uneven distribution of RBCs in daughter vessels, but these junctions also switch between an even and uneven flow over time.

"This is the biological problem that has immense significance in healthy states and disease states," said Prosenjit Bagchi, one of the authors of the paper. "These phenomena have been known for centuries, but in terms of high-fidelity computational modeling, there has not been much."

Bagchi likens the partitioning of blood cells at bifurcations along blood vessels to cars in traffic where, sometimes, detours happen. Anything from an injury, to a blocked capillary, to a tumor creating new vessels to feed itself can lead to a blood vessel falling out of use. "When it comes to blood vessels, we use or lose it," Bagchi said. "If a city sees that nobody is driving on a particular road, they will stop keeping up with it and might discard it. Microvascular networks are constantly changing their architecture, even in the aging process."

A prominent method to model red blood cell partitioning, called plasma skimming, renders red blood cells as infinitesimally tiny dots that move through a blood vessel. Bagchi's group was surprised to learn how much this technique underpredicts the partitioning behavior and leads to highly nonuniform distribution of cells in a network. By considering the effect of the cell size, known as cell screening, the team modelled flow with much less heterogeneity in cell distribution.

The group's work casts new light on a longstanding assumption that blood vessel bifurcations either distribute RBCs proportionately or disproportionately with respect to flow. Instead, their findings revealed that vessels can switch between even and uneven partitioning, based on factors including upstream mechanisms that shift RBCs to one side of the mother vessel, bunching up of RBCs at bifurcation points, or changes in flow resistance in the daughter vessels.

Bagchi said he hopes his findings and model will prove to be a helpful tool for researchers looking to better understand blood flow in microvascular networks. In the future, his team is looking towards other particles, including how drug particles are distributed, to accurately predict their transport through capillary networks.

###

Media Contact

Rhys Leahy
[email protected]
301-209-3090
@AIPPhysicsNews

http://www.aip.org

https://publishing.aip.org/publishing/journal-highlights/vessel-not-taken-understanding-disproportionate-blood-flow#overlay-context=publishing/journal-highlights/vessel-not-taken-understanding-disproportionate-blood-flow

Related Journal Article

http://dx.doi.org/10.1063/1.5024783

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.