• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Neuron guidance factor found to play a key role in immune cell function

Bioengineer by Bioengineer
May 20, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Osaka University

Osaka – Macrophages are white blood cells involved in a variety of biological functions, from destroying infectious pathogens to repairing damaged tissue. To carry out their different roles, macrophages must first be activated and transformed into different subtypes. However, the mechanisms that lead to macrophage activation are not fully understood.

Now, researchers at Osaka University have identified a new player that activates macrophages and allows them to take on a protective role against inflammatory disorders such as sepsis and inflammatory bowel disease (IBD). They recently published their results in Nature Immunology.

Activated macrophages are traditionally classified as either pro- (M1) or anti- (M2) inflammatory macrophages. The M1 type are part of the inflammatory response that kills invading organisms. M2-type macrophages, by contrast, have anti-inflammatory properties and are thought to protect against inflammatory disorders such as sepsis and IBD. The researchers were interested in understanding precisely what drives macrophages to form the M2 type.

"M1 and M2 macrophages have different energy needs, so macrophages need to be able to sense and respond to nutrients in their surroundings as part of the activation process," study lead author Sujin Kang explains. "We already knew that macrophages altered their metabolism when they differentiated to the M2 subtype, but we didn't understand exactly how this metabolic reprogramming worked."

To gain insight into how M2 macrophages meet their energy demands, the researchers focused on a signaling pathway called mTOR, which is involved in cell metabolism and known to drive macrophages to the M2 type. They used a chemical inhibitor to shut down the activity of the mTOR protein, allowing them to see how other players in the pathway were affected.

To their surprise, the team's search led them to Sema6D, a protein known primarily for its role in guiding neurons during nervous system development. When the team genetically removed Sema6D from macrophages, however, the cells could no longer efficiently take up fatty acids from their environment–a key energy source for M2 macrophages. Without this fatty energy, the macrophages were unable to complete their transformation to the M2 type.

"Once we found we could block M2 differentiation, we wanted to see how this impacted the protective role of macrophages in chronic inflammatory diseases," Kang adds. "Using a model that mimics colitis, we found that mice lacking Sema6D have much more severe symptoms. Sema6D-deficient mice have significantly less body weight, a shorter colon, severe infiltration of inflammatory cells, and extensive damage to the cells lining the colon."

The findings have potentially important clinical implications, as they provide a new potential therapeutic target for the treatment of inflammatory diseases such as IBD .

"Our study demonstrates a key role for Sema6D in the metabolic reprogramming that occurs during the formation of M2 macrophages," lead investigator Atsushi Kumanogoh concludes. "Our findings suggest that Sema6D dysfunction prevents macrophages from differentiating to the anti-inflammatory M2 type, leaving the body more vulnerable to inflammatory pathologies. We're hopeful that this discovery offers new leads in the drug discovery process for these diseases."

###

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum. Website: http://resou.osaka-u.ac.jp/en/top

Media Contact

Saori Obayashi
[email protected]
81-661-055-886
@osaka_univ_e

http://www.osaka-u.ac.jp/en

Original Source

http://resou.osaka-u.ac.jp/en/research/2018/20180519_1 http://dx.doi.org/10.1038/s41590-018-0108-0

Share12Tweet8Share2ShareShareShare2

Related Posts

Developing Iliac Wing Fracture Risk Curve for Women

August 27, 2025

Liquiritigenin Boosts Oocyte Quality in Aging Mice

August 27, 2025

Newly Discovered Amazonian Bacterium Closely Related to Andean Species Responsible for Human Bartonellosis

August 27, 2025

Chemogenetics Curbs Cocaine-Driven Drug Seeking

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Developing Iliac Wing Fracture Risk Curve for Women

Unraveling Hypospadias: Genetics and Development Insights

Liquiritigenin Boosts Oocyte Quality in Aging Mice

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.