• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

An unexpected chemosensor pathway for innate fear behavior against predator odor

Bioengineer by Bioengineer
May 21, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Tsukuba

Tsukuba, Japan -Innate fear is an essential emotion for animals to avoid danger in a severe natural environment. Rodents kept in a laboratory also show instinctive fear behavior against the smell of predators such as foxes, cats or snakes despite having never seen them. This innate fear represents an evolutionarily conserved and genetically encoded survival mechanism. However, the molecular basis of innate behaviors is largely unknown.

Scientists centered at the International Institute for Integrative Sleep Medicine (WPI-IIIS) at the University of Tsukuba in Japan used chemical mutagenesis to introduce random mutations into mice. The animals are screened for abnormal fear responses against a potent derivative of fox odorant. The screen identified a mutant pedigree, named Fearless, showing markedly attenuated freezing response (typical fear behavior in mice) against the odorant. The Fearless pedigree carried a mutation in the Trpa1 gene, which function as a pungency/irritancy receptor.

Loss of Trpa1 in mice diminished predator odor-evoked innate fear behaviors, although they exhibit a normal sense of smell. The research team then found that Trpa1 acts as a chemosensor to detect predator odors. Trpa1 is highly expressed in the trigeminal somatosensory system, which plays a crucial role in nociception, sensing harmful and potentially painful chemicals. They showed that Trpa1-expressed trigeminal neurons contribute critically to fear odor-evoked innate freezing behavior.

"Surprisingly, the trigeminal system, but the not the traditional olfactory system, triggers instinctive fear responses," says the senior author Qinguha Liu. "Predator odor-mediated activation of the Trpa1 nociceptive pathway should instinctively warn the mice of imminent dangers and trigger emergency responses to promote survival. Our studies provide a compelling molecular logic to explain how predator odor-evoked innate fear/defensive behaviors are genetically hardwired."

Furthermore, understating basic mechanism of emotion is important for therapeutics of human anxiety disorders. According to the National Institute of Mental Health (NIMH), approximately 40 million of Americans are affected by a spectrum of fear/anxiety disorders.

"We hope that identification of core fear genes, together with the use of 'fearful' mice as animal models, should facilitate our understanding of genetic origins and development of novel and effective therapeutics for human anxiety disorders," says a co-author Masashi Yanagisawa.

###

Media Contact

Masataka Watanabe
[email protected]
81-298-532-039

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-04324-3

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.