• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Genome editing method targets AIDS virus

Bioengineer by Bioengineer
May 18, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

By destroying the regulatory genes of the AIDS virus HIV-1 using the genome editing system CRISPR/Cas9, a Japanese research group has succeeded in blocking the production of HIV-1 by infected cells.

Human immunodeficiency virus-1 (HIV-1) infection is a chronic disease affecting more than 35 million people worldwide. The infection can be controlled by antiretroviral therapy (ART), but there is still no complete cure. It is hard to eradicate cells latently infected with HIV-1 in a patient's body because when the virus proliferates, the viral gene is inserted into the chromosomes in the infected cells.

Genome editing methods cut specific parts of genes, allowing us to remove or add sections of the DNA sequence. The recently developed CRISPR/Cas9 system is a promising tool for deactivating the HIV-1 genes that have been incorporated into the chromosomes of infected individuals.

This study targeted two genes that regulate the proliferation of HIV-1, known as tat and rev. Based on genetic information from six major HIV-1 subtypes, the team designed six types of guide RNA (gRNA) that enable specific genome editing using the CRISPR/Cas9 system. They created a lentiviral vector that expresses Cas9 and gRNA. When they introduced this vector to cultured cells that expressed the regulatory gene products Tat and Rev, they succeeded in significantly lowering the expression and functions of both Tat and Rev. The team found no off-target mutations (non-specific genome editing that unintentionally targets the host cell genes), and the expression of Cas9 and gRNA did not affect the survival rate of the cultured cells.

By introducing gRNA and Cas9 to cultured cells with a latent or persistent HIV-1 infection, they were able to markedly suppress cytokine-dependent HIV-1 reactivation in latently infected cells and HIV-1 replication from persistently infected cells. Furthermore, by introducing all six types of gRNA at the same time, they managed to almost completely block virus production from the infected cells.

The research team was led by Associate Professor Masanori Kameoka, Assistant Professor Tomohiro Kotaki (Kobe University Graduate School of Health Sciences) and Youdiil Ophinni (Kobe University Graduate School of Medicine). The findings were published on May 17 in Scientific Reports.

"These results show that the CRISPR/Cas9 system, by targeting the regulatory genes of HIV-1, tat and rev, is a promising method for treating HIV infection" comments Associate Professor Kameoka.

"We now need to investigate how we can selectively introduce a CRISPR/Cas9 system that targets HIV-1 genes into the infected cells of patients. In order to safely and effectively introduce the CRISPR/Cas9 system the vectors must be improved. We hope this research will provide us with useful information in developing a treatment method that can completely cure the HIV-1 infection."

###

Media Contact

Eleanor Wyllie
[email protected]
@KobeU_Global

http://www.kobe-u.ac.jp/en/

http://www.kobe-u.ac.jp/research_at_kobe_en/NEWS/news/2018_05_18_01.html

Related Journal Article

http://dx.doi.org/10.1038/s41598-018-26190-1

Share12Tweet7Share2ShareShareShare1

Related Posts

Omicron Variant Peptide Binding to HLA Variants Explored

August 27, 2025

Global Study Uncovers Critical Disparities in Maternal Health Across Australia, USA, and UK

August 27, 2025

Boosting Safety-Net Hospitals’ Adoption of OUD Interventions

August 27, 2025

3D Ultrasound Predicts Ovarian Response in IVF

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Omicron Variant Peptide Binding to HLA Variants Explored

Cervical Cancer Survival Rates in Sarawak Revealed

Global Study Uncovers Critical Disparities in Maternal Health Across Australia, USA, and UK

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.