• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Rutgers researchers create a 3D-printed smart gel that walks underwater, moves objects

Bioengineer by Bioengineer
May 18, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Daehoon Han/Rutgers University-New Brunswick

Rutgers University-New Brunswick engineers have created a 3D-printed smart gel that walks underwater and grabs objects and moves them.

The watery creation could lead to soft robots that mimic sea animals like the octopus, which can walk underwater and bump into things without damaging them. It may also lead to artificial heart, stomach and other muscles, along with devices for diagnosing diseases, detecting and delivering drugs and performing underwater inspections.

Soft materials like the smart gel are flexible, often cheaper to manufacture than hard materials and can be miniaturized. Devices made of soft materials typically are simple to design and control compared with mechanically more complex hard devices.

"Our 3D-printed smart gel has great potential in biomedical engineering because it resembles tissues in the human body that also contain lots of water and are very soft," said Howon Lee, senior author of a new study and an assistant professor in the Department of Mechanical and Aerospace Engineering. "It can be used for many different types of underwater devices that mimic aquatic life like the octopus."

The study, published online today in ACS Applied Materials & Interfaces, focuses on a 3D-printed hydrogel that moves and changes shape when activated by electricity. Hydrogels, which stay solid despite their 70-plus percent water content, are found in the human body, diapers, contact lenses, Jell-O and many other things.

During the 3D-printing process, light is projected on a light-sensitive solution that becomes a gel. The hydrogel is placed in a salty water solution (or electrolyte) and two thin wires apply electricity to trigger motion: walking forward, reversing course and grabbing and moving objects, said Lee. The human-like walker that the team created is about one inch tall.

The speed of the smart gel's movement is controlled by changing its dimensions (thin is faster than thick), and the gel bends or changes shape depending on the strength of the salty water solution and electric field. The gel resembles muscles that contract because it's made of soft material, has more than 70 percent water and responds to electrical stimulation, Lee said.

"This study demonstrates how our 3D-printing technique can expand the design, size and versatility of this smart gel," he said. "Our microscale 3D-printing technique allowed us to create unprecedented motions."

###

The study's lead author is Daehoon Han, a doctoral student in mechanical and aerospace engineering in Rutgers' School of Graduate Studies. Co-authors include former Rutgers undergraduate student Cindy Farino; Chen Yang, a doctoral student in mechanical and aerospace engineering; Tracy Scott, a former postdoc; Daniel Browe, a doctoral student in biomedical engineering; Joseph W. Freeman, an associate professor in the Department of Biomedical Engineering; and Wonjoon Choi, an associate professor in the School of Mechanical Engineering at Korea University in Seoul, Republic of Korea.

Media Contact

Todd Bates
[email protected]
848-932-0550
@RutgersU

http://www.rutgers.edu

Original Source

https://news.rutgers.edu/3d-printed-smart-gel-walks-underwater-and-moves-objects/20180515#.WvwnNqQvy70 http://dx.doi.org/10.1021/acsami.8b04250

Share12Tweet7Share2ShareShareShare1

Related Posts

Boosting Safety-Net Hospitals’ Adoption of OUD Interventions

August 27, 2025

3D Ultrasound Predicts Ovarian Response in IVF

August 27, 2025

End-of-Life Decisions for Patients with LVADs

August 27, 2025

Gender Variations in Health-Related Quality of Life

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Safety-Net Hospitals’ Adoption of OUD Interventions

IFN-Îł/IL-4 Ratio Predicts Lymphoma Outcomes

3D Ultrasound Predicts Ovarian Response in IVF

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.