• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Advanced materials: processing glass like a polymer

Bioengineer by Bioengineer
May 17, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Markus Breig, KIT

Pure quartz glass is highly transparent and resistant to thermal, physical, and chemical impacts. These are optimum prerequisites for use in optics, data technology or medical engineering. For efficient, high-quality machining, however, adequate processes are lacking. Scientists of Karlsruhe Institute of Technology (KIT) have developed a forming technology to structure quartz glass like a polymer. This innovation is reported in the journal Advanced Materials.

"It has always been a big challenge to combine highly pure quartz glass and its excellent properties with a simple structuring technology," says Dr. Bastian E. Rapp, Head of the NeptunLab interdisciplinary research group of KIT's Institute of Microstructure Technology (IMT). Rapp and his team develop new processes for industrial glass processing. "Instead of heating glass up to 800 °C for forming or structuring parts of glass blocks by laser processing or etching, we start with the smallest glass particles," says the mechanical engineer. The scientists mix glass particles of 40 nanometers in size with a liquid polymer, form the mix like a sponge cake, and harden it to a solid by heating or light exposure. The resulting solid consists of glass particles in a matrix at a ratio of 60 to 40 vol%. The polymers act like a bonding agent that retains the glass particles at the right locations and, hence, maintains the shape.

This "Glassomer" can be milled, turned, laser-machined or processed in CNC machines just like a conventional polymer. "The entire range of polymer forming technologies is now opened for glass," Rapp emphasizes. For fabricating high-performance lenses that are used in smartphones among others, the scientists produce a Glassomer rod, from which the lenses are cut. For highly pure quartz glass, the polymers in the composite have to be removed. For doing so, the lenses are heated in a furnace at 500 to 600 °C and the polymer is burned fully to CO2. To close the resulting gaps in the material, the lenses are sintered at 1300 °C. During this process, the remaining glass particles are densified to pore-free glass.

This forming technology enables production of highly pure glass materials for any applications, for which only polymers have been suited so far. This opens up new opportunities for the glass processing industry as well as for the optical industry, microelectronics, biotechnology, and medical engineering. "Our process is suited for mass production. Production and use of quartz glass are much cheaper, more sustainable, and more energy-efficient than those of a special polymer," Rapp explains.

This is the third innovation for the processing of quartz glass that has been developed by NeptunLab on the basis of a liquid glass-polymer mixture. In 2016, the scientists already succeeded in using this mixture for molding. In 2017, they applied the mixture for 3D printing and demonstrate its suitability for additive manufacture. Within the framework of the "NanomatFutur" competition for early-stage researchers, the team was funded with EUR 2.8 million by the Federal Ministry of Education and Research from 2014 to 2018. A spinoff now plans to commercialize Glassomer.

###

Original publication

F. Kotz, N. Schneider, A. Striegel, A. Wolfschläger, N. Keller, M. Worgull, W. Bauer, D. Schild, M. Milich, C. Greiner, D. Helmer, B. E. Rapp: "Glassomer: Processing Fused Silica Glass like a Polymer", Advanced Materials, 2018: https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.201707100

More information on NeptunLab: http://www.neptunlab.org

More information on Glassomer GmbH: http://www.glassomer.com

Press contact:

Regina Link, Editor, Phone: +49 721 608-21158, Email: [email protected]

Being "The Research University in the Helmholtz Association," KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 25,500 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life.

This press release is available on the internet at http://www.sek.kit.edu/english/press_office.php.

Media Contact

Monika Landgraf
[email protected]
49-721-608-47414
@KITKarlsruhe

http://www.kit.edu/index.php

Original Source

https://www.kit.edu/kit/english/pi_2018_061_advanced-materials-processing-glass-like-a-polymer.php

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Nautilus Shells: Conservation, Crafts, and Legal Challenges

August 28, 2025
EBLN3P Enhances Gastric Cancer Growth and Spread

EBLN3P Enhances Gastric Cancer Growth and Spread

August 28, 2025

Two Fish Species, Two Strategies: A Novel Model Unveils Insights into Working Memory

August 28, 2025

Not All Calories Are Created Equal: How Ultra-Processed Foods Impact Men’s Health

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New CEA-Based Surveillance Boosts Gastric Cancer

Zharp1-163: Dual Inhibitor Tackles Inflammation, Kidney Injury

Enhancing Pediatric Nursing Education with Advanced Simulators

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.