• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mechanical force controls the speed of protein synthesis

Bioengineer by Bioengineer
May 16, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Benjamin Fritch

As cells create proteins, the proteins modulate synthesis speed by exerting a mechanical force on the molecular machine that makes them, according to a team of scientists who used a combination of computational and experimental techniques to understand this force.

Proteins power many of a cell's vital functions, from providing structure to delivering information to fighting viruses. Defective protein synthesis is linked to numerous diseases, including subtypes of hemophilia, lung carcinoma, and cervical and vulvar cancers.

"What has been observed in the past decade is that if you change the speed at which a protein gets synthesized, you can alter how the protein behaves," said Edward O'Brien, assistant professor of chemistry and an Institute for CyberScience co-hire, Penn State. "We tried to identify new factors that influence protein synthesis speed."

Ribosomes, tiny factories in the cell, stitch amino acids into a long chain to create proteins. During this process, newly synthesized protein segments pass through a narrow tunnel of the ribosome. When they exit the tunnel, proteins naturally pull away from the ribosome, O'Brien said.

"These protein molecules like to be in regions of space with a lot of free volume where they can move around, rather than in confined narrow spaces," said O'Brien.

The force that pulls the protein from the ribosome is an entropic pulling force that happens naturally, according to O'Brien.

Entropic force in a system is a force resulting from the entire system's tendency to increase its entropy, rather than from a particular underlying microscopic force. Entropy is the tendency for systems to become more disordered over time.

"That pulling force gets propagated back to where the synthesis is occurring within the ribosome, and modulates that process," said O'Brien.

The researchers observed that unstructured protein segments generate piconewtons of force and that this force is transmitted across the ribosome molecular machine, and that it affects the speed at which amino acids are stitched together.

The team started their study from experimental measurements that detected how much proteins stretched on the ribosome. The researchers input this information into high-performance computer simulations that ran for months using both the Penn State Institute for CyberScience's Advanced CyberInfrastructure and the Extreme Science and Engineering Discovery Environment, an NSF-funded virtual organization. These simulations allowed them to see how protein synthesis was carried out under numerous conditions.

"By understanding the factors governing the speed of protein synthesis, we can now start to understand how protein synthesis affects downstream processes involving protein structure and function, including various diseases," said O'Brien.

The researchers published their findings in the Journal of the American Chemical Society.

###

Collaborators on this work include recent graduate Benjamin Fritch, and graduate student in chemistry Daniel Nissley, Penn State; Andrey Kosolapov and Carol Deutsch, University of Pennsylvania; and Phillip Hudson and H. Lee Woodcock, University of South Florida.

The National Science Foundation, Penn State and the University of South Florida supported this work.

Media Contact

A'ndrea Elyse Messer
[email protected]
814-865-9481
@penn_state

http://live.psu.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.