• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

WSU Tri-Cities team researching use of fungi to restore native plant populations

Bioengineer by Bioengineer
May 14, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Washington State University

RICHLAND, Wash. – Transplanting fungi to restore native plant populations in the Midwest and Northwest is the focus of efforts by a team of WSU Tri-Cities researchers.

Mycorrhizal fungi form a symbiotic relationship with many plant roots, which helps stabilize the soil, conserve water and provides a habitat for many birds and insects, said Tanya Cheeke, assistant professor of biology. Some native plant species are more dependent on mycorrhizal fungi than invasive plant species. So, when that fungi is disturbed, native plants may not be able to compete as well with invasive species, disrupting the natural ecosystem of the environment and inhibiting many natural processes, she said.

Inoculate seedlings with microbes

"One way to improve native plant survival and growth in disturbed environments may be to inoculate seedlings with native soil microbes, which are then transplanted into a restoration site," Cheeke said. "We've been doing prairie restoration in Kansas for the past two years. Now, we're also doing something similar in the Palouse area in Washington."

Cheeke is working with a team of undergraduate and graduate students to complete the research. A group of her undergraduate students recently presented their project during the WSU Tri-Cities Undergraduate Research Symposium and Art Exhibition. Those students include Catalina Yepez, Jasmine Gonzales, Megan Brauner and Bryndalyn Corey.

The undergraduate team spent the past semester analyzing the spread of fungi from an inoculated soil environment in Kansas to see how far the fungi had spread into a restoration area. One year after planting, soil samples were collected at 0.5 meter, 1 meter, 1.5 meters, and 2 meters from the site of the inoculation in each plot. The samples were then tested for the presence of fungal DNA to see if the inoculated mycorrhizal species had reached the various distances from the inoculation points.

"The results will be used to inform ecological restoration efforts aimed at improving the survival and growth of native plants in disturbed ecosystems," undergraduate student Megan Brauner said.

Disturbed vs. pristine environments

Cheeke said they also are looking at how microbes change across gradients of disturbed environments compared to pristine environments.

"We want to determine the microbes that are present in pristine environments, but are missing from disturbed sites," she said.

Eventually, Cheeke said they would like to develop soil restoration strategies that other people can implement in their own environments.

###

Media Contact

Tanya Cheeke, assistant professor, biology
[email protected]
509-372-7393
@WSUNews

Washington State University

Original Source

https://news.wsu.edu/2018/05/10/use-fungi-to-restore-native-plants/

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.