• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists screen molecules for promise as new prostate cancer drugs

Bioengineer by Bioengineer
May 11, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cancer researchers at the University of Bath have measured systematically how efficient molecules are at suppressing the activity of a protein associated with prostate and other cancers. The molecules could eventually be developed into new anti-cancer drugs.

The research team from the Departments of Pharmacy & Pharmacology and Chemistry are studying a protein called α-methylacyl-CoA racemase (AMACR) as a potential target for cancer treatments. Levels of AMACR protein and activity are increased by ~10-fold in all prostate cancers. Reducing these levels using genetic techniques makes the cancer cells less aggressive, and their behaviour becomes more like normal cells.

Until relatively recently finding molecules that could target and inhibit AMACR has been challenging because it's been difficult to accurately measure activity levels of the protein. However, after designing a simple colour-change test which can do precisely that, the University of Bath team were able to start analysing how the structure of promising molecules affects the activity of AMACR.

The team systematically varied the design of drug molecules in order to identify which parts of the molecule are important for effectiveness against AMACR.

In particular they confirmed that the 'oiliness' of a molecule is directly related to its potency – oily regions of the drug molecule, which exclude water, can stick to their targets more easily – although this had been predicted, the University of Bath experiments confirm it for the first time.

The information from the tests will help the team move towards more promising anti-cancer drugs. Their next steps will be to use the information to design rationally even more potent molecules for testing against AMACR.

The research is published in the journal Bioorganic Chemistry.

Lead author Dr Matthew Lloyd said: "This is a small but important step in the development of new treatments for prostate cancer based on AMACR inhibition. It's important because it provides a framework with which to predict and measure drug effectiveness. This will facilitate the development of new treatments for prostate cancer and other cancers in which AMACR levels are increased.

"The test that we've developed at Bath makes this sort of work possible and will now allow us to continue to work towards new anti-cancer drugs."

The study was funded by Prostate Cancer UK with support from the Movember Foundation as part of their initiative to develop new treatments for prostate cancer.

Dr Matthew Hobbs, Deputy Director of Research at Prostate Cancer UK, said: "Over 11,000 men die from prostate cancer every year in the UK, making it the third biggest cancer killer. In these men prostate cancer cells grow and evolve and eventually become resistant to the treatments currently available to combat the disease. However, important research like this which seeks to find new, innovative ways to treat prostate cancer has the potential to stop this trend.

"It's thanks to the funds raised by supporters of Prostate Cancer UK and the Movember Foundation that this research is possible."

In the United Kingdom, prostate cancer is the most common male-specific cancer with 47,151 new diagnoses reported in 2015 and 11,287 deaths in 2014. It accounts for 26% of all cancers diagnosed in men, with one in eight men being diagnosed with prostate cancer in their lifetime. Although 84% of men will survive for at least 10 years with the disease, new treatments are urgently needed especially for those men diagnosed with more advanced disease.

The paper "Structure-activity relationships of rationally designed AMACR 1A inhibitors" is available online.

###

For further information, please contact Chris Melvin in the University of Bath Press Office on +44 (0)1225 383 941 or [email protected]

Notes

The University of Bath is one of the UK's leading universities both in terms of research and our reputation for excellence in teaching, learning and graduate prospects.

The University is rated Gold in the Teaching Excellence Framework (TEF), the Government's assessment of teaching quality in universities, meaning its teaching is of the highest quality in the UK.

In the Research Excellence Framework (REF) 2014 research assessment 87 per cent of our research was defined as 'world-leading' or 'internationally excellent'. From developing fuel efficient cars of the future, to identifying infectious diseases more quickly, or working to improve the lives of female farmers in West Africa, research from Bath is making a difference around the world. Find out more: http://www.bath.ac.uk/research/

Well established as a nurturing environment for enterprising minds, Bath is ranked highly in all national league tables. We are ranked 5th in the UK by The Guardian University Guide 2018, 6th for graduate employment and 4th in the Times Higher Education Student Experience Survey 2018. Bath has also been named Sports University of the Year 2018 by The Times and Sunday Times.

Media Contact

Chris Melvin
[email protected]
44-012-253-83841
@uniofbath

http://www.bath.ac.uk

http://preview.bath.ac.uk/announcements/scientists-screen-molecules-for-promise-as-new-prostate-cancer-drugs/

Related Journal Article

http://dx.doi.org/10.1016/j.bioorg.2018.04.024

Share12Tweet7Share2ShareShareShare1

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.