• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New gene therapy sparks healthy heart beats

Bioengineer by Bioengineer
May 9, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y. – The most common and potentially lethal complication following a heart attack is the heart's inability to do one of its most basic jobs: beat at a normal rate.

Following myocardial infarction, heart muscle cells are replaced by fibroblasts and new blood vessels, which do not conduct electricity and leave the heart susceptible to ventricular tachycardia – an excessive heart rate that can result in sudden death. These non-heart cells disrupt the normal pattern of electrical conduction that is critical for effective pumping. If there were a way to make these cells electrically active, one could bridge the conduction block to a certain degree, and greatly decrease dangerous post-infarction complications.

Michael Kotlikoff, provost of Cornell University and a professor of molecular physiology, is part of an international collaboration that is aiming to bridge that gap in damaged hearts with a simple gene-therapy approach.

Their paper, "Overexpression of Cx43 in Cells of the Myocardial Scar: Correction of Post-infarct Arrhythmias Through Heterotypic Cell-Cell Coupling," was published in Nature Scientific Reports. The team was led by Bernd Fleischmann, M.D., professor and chairman of the Institute of Physiology at the University of Bonn, with whom Kotlikoff has collaborated for almost 30 years.

Their work demonstrates a dramatic reduction of post-infarction arrhythmias in mice following the transfer of a single gene, Connexin43, which electrically couples non-excitable cells to undamaged heart cells.

"We've created a bridge for the electrical signal," Fleischmann said. "We suspected it would work. We suspected that the cells we were putting in were actually working in this way, but it is really exciting."

The group's excitement is tempered by the reality that these are mouse hearts, with induced, regularly shaped infarctions that are fractions of the size of those in humans. The spatial difference, Kotlikoff said, is not trivial.

"Whether this will work in humans, or even in larger animals, that's still a question and my colleagues in Germany are pursuing this," Kotlikoff said.

Still, he said, what's most exciting about this is the ease with which this procedure could be done, if tests on larger animals prove successful.

"It could be a very simple medical procedure," Kotlikoff said. "One could imagine a relatively noninvasive procedure in which the gene is introduced through a catheter, resulting in long term protection."

###

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Media Contact

Jeff Tyson
[email protected]
607-793-5769
@cornell

http://pressoffice.cornell.edu

http://news.cornell.edu/stories/2018/05/kotlikoff-part-international-research-effort-prevent-heart-arrhythmia

Related Journal Article

http://dx.doi.org/10.1038/s41598-018-25147-8

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.